Tutorials in Introductory Physics
Tutorials in Introductory Physics
1st Edition
ISBN: 9780130970695
Author: Peter S. Shaffer, Lillian C. McDermott
Publisher: Addison Wesley
bartleby

Videos

Textbook Question
Book Icon
Chapter 27.1, Problem 1cTH

Consider the following incorrect student statement.

“In the Ideal gas law, P = n R T / V , so the pressure is inversely proportional to the volume. If you decrease the volume, the pressure has to go up.”

What is the flaw in the student’s reasoning?

Blurred answer
Students have asked these similar questions
Using MATLAB editor, make a script m-file which includes a header block and comments: Utilizing the ideal gas law: Vmol= RT/P Calculate the molecular volume where: R = 0.08206 L-atm/(mol-K) P = 1.015 atm. and T = 270 - 315 K in 5 degree increments Make a display matrix which has the values of T in the first column and Vmol in the second column Save the script and publish function to create a pdf file from the script in a file named "ECE105_Wk2_L1_Prep_1"
A (1.1x10^1) liter bottle is filled with nitrogen (N2) at STP (Standard Temperature and Pressure is 1 atm and 273 K) and closed tight. If the temperature is raised to 100° C, what will be the new pressure in SI units to two significant figures. Note: Your answer is assumed to be reduced to the highest power possible. Your Answer: x10 Answer
Consider an ideal gas at temperature T = 578 K and pressure p = 2 atm. Calculate the average volume per molecule in this gas in units of cubic nanometers (a nanometer is 10-9 m). Do not include units in your answer and state your answer as a number in normal form.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    College Physics
    Physics
    ISBN:9781938168000
    Author:Paul Peter Urone, Roger Hinrichs
    Publisher:OpenStax College
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY