Concept explainers
CP A particle with charge 7.80 µC is moving with velocity
Want to see the full answer?
Check out a sample textbook solutionChapter 27 Solutions
University Physics (14th Edition)
Additional Science Textbook Solutions
Conceptual Integrated Science
Essential University Physics: Volume 1 (3rd Edition)
College Physics: A Strategic Approach (4th Edition)
Essential University Physics (3rd Edition)
The Cosmic Perspective (8th Edition)
The Cosmic Perspective Fundamentals (2nd Edition)
- A particle moving downward at a speed of 6.0106 m/s enters a uniform magnetic field that is horizontal and directed from east to west. (a) If the particle is deflected initially to the north in a circular arc, is its charge positive or negative? (b) If B = 0.25 T and the charge-to-mass ratio (q/m) of the particle is 40107 C/kg. what is ±e radius at the path? (c) What is the speed of the particle after c has moved in the field for 1.0105s ? for 2.0s?arrow_forwardOne long wire carries current 30.0 A to the left along the x axis. A second long wire carries current 50.0 A to the right along the line (y = 0.280 m, z = 0). (a) Where in the plane of the two wires is the total magnetic field equal to zero? (b) A particle with a charge of 2.00 C is moving with a velocity of 150iMm/s along the line (y = 0.100 m, z = 0). Calculate the vector magnetic force acting on the particle. (c) What If? A uniform electric field is applied to allow this particle to pass through this region undetected. Calculate the required vector electric field.arrow_forwardAt a particular instant an electron is traveling west to east with a kinetic energy of 10 keV. Earth's magnetic field has a horizontal component of 1.8105 T north and a vertical component of 5.0105 T down. (a) What is the path of the election? (b) What is the radius of curvature of the path?arrow_forward
- A proton travels with a speed of 3.00 106 m/s at an angle of 37.0 with the direction of a magnetic field of 0.300 T in the +y direction. What are (a) the magnitude of the magnetic force on the proton and (b) its acceleration?arrow_forwardAn electron in a TV CRT moves with a speed of 6.0107 m/s, in a direction perpendicular to Earth's field, which has a strength of 5.0105 T. (a) What strength electric field must be applied perpendicular to the Earth’s field to make the election moves in a straight line? (b) If this is done between plates separated by 1.00 cm, what is the voltage applied? (Note that TVs are usually surrounded by a ferromagnetic material to shield against external magnetic fields and avoid the need for such a collection,)arrow_forwardAn electron is accelerated through 2.40 103 V from rest and then enters a uniform 1.70-T magnetic field. What are (a) the maximum and (b) the minimum values of the magnetic force this particle experiences?arrow_forward
- Why is the following situation impossible? Figure P28.46 shows an experimental technique for altering the direction of travel for a charged particle. A particle of charge q = 1.00 C and mass m = 2.00 1015 kg enters the bottom of the region of uniform magnetic field at speed = 2.00 105 m/s, with a velocity vector perpendicular to the field lines. The magnetic force on the particle causes its direction of travel to change so that it leaves the region of the magnetic field at the top traveling at an angle from its original direction. The magnetic field has magnitude B = 0.400 T and is directed out of the page. The length h of the magnetic field region is 0.110 m. An experimenter performs the technique and measures the angle at which the particles exit the top of the field. She finds that the angles of deviation are exactly as predicted. Figure P28.46arrow_forwardTwo long, straight wires are parallel and 25 cm apart. (a) If each wire carries a current of 50 A in the same direction, what is the magnetic force per meter exerted on each wire? (b) Does tire force pull the wires together or push them apart? (c) What happens if the currents flow in opposite directions?arrow_forwardA spacecraft is in 4 circular orbit of radius equal to 3.0 104 km around a 2.0 1030 kg pulsar. The magnetic field of the pulsar at that radial distance is 1.0 102 T directed perpendicular to the velocity of the spacecraft. The spacecraft is 0.20 km long with a radius of 0.040 km and moves counter-clockwise in the xy-plane around the pulsar. (a) What is the speed of the spacecraft? (b) If the magnetic field points in the positive z-direction, is the emf induced from the back to the front of the spacecraft or from side to side? (c) Compute the induced emf. (d) Describe the hazards for astronauts inside any spacecraft moving in the vicinity of a pulsar.arrow_forward
- A proton moving in the plane of the page has a kinetic energy of 6.00 MeV. A magnetic field of magnitude H = 1.00 T is directed into the page. The proton enters the magnetic field with its velocity vector at an angle = 45.0 to the linear boundary of' the field as shown in Figure P29.80. (a) Find x, the distance from the point of entry to where the proton will leave the field. (b) Determine . the angle between the boundary and the protons velocity vector as it leaves the field.arrow_forwardA proton (charge +e, mass mp), a deuteron (charge +e, mass 2mp), and an alpha particle (charge +2e, mass 4mp) are accelerated from rest through a common potential difference V. Each of the particles enters a uniform magnetic field B, with its velocity in a direction perpendicular to B. The proton moves in a circular path of radius p. In terms of p, determine (a) the radius rd of the circular orbit for the deuteron and (b) the radius r for the alpha particle.arrow_forwardWhat magnetic field is required in order to confine a proton moving with a speed of 4.0 × 106 m/s to a circular orbit of radius 10 cm?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning