University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 27, Problem 27.74P
To determine
The tension in the string.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 27 Solutions
University Physics (14th Edition)
Ch. 27 - Can a charged particle move through a magnetic...Ch. 27 - Prob. Q27.2DQCh. 27 - Section 27.2 describes a procedure for finding the...Ch. 27 - The magnetic force on a moving charged particle is...Ch. 27 - A charged particle is fired into a cubical region...Ch. 27 - If the magnetic force does no work on a charged...Ch. 27 - A charged particle moves through a region of space...Ch. 27 - How might a loop of wire carrying a current be...Ch. 27 - How could the direction of a magnetic field be...Ch. 27 - A loose, floppy loop of wire is carrying current...
Ch. 27 - Prob. Q27.11DQCh. 27 - Each of the lettered points at the corners of the...Ch. 27 - A student claims that if lightning strikes a metal...Ch. 27 - Prob. Q27.14DQCh. 27 - The magnetic force acting on a charged particle...Ch. 27 - When the polarity of the voltage applied to a dc...Ch. 27 - Prob. Q27.17DQCh. 27 - Prob. Q27.18DQCh. 27 - A particle with a charge of 1.24 108C is moving...Ch. 27 - A particle of mass 0.195 g carries a charge of...Ch. 27 - In a 1.25-T magnetic field directed vertically...Ch. 27 - A particle with mass 1.81 103 kg and a charge of...Ch. 27 - An electron experiences a magnetic force of...Ch. 27 - An electron moves at 1.40 106m/s through a region...Ch. 27 - CP A particle with charge 7.80 C is moving with...Ch. 27 - CP A particle with charge 5.60 nC is moving in a...Ch. 27 - A group of particles is traveling in a magnetic...Ch. 27 - A flat, square surface with side length 3.40 cm is...Ch. 27 - A circular area with a radius of 6.50 cm lies in...Ch. 27 - A horizontal rectangular surface has dimensions...Ch. 27 - An open plastic soda bottle with an opening...Ch. 27 - Prob. 27.14ECh. 27 - An election at point A in Fig. E27.15 has a speed...Ch. 27 - Repeat Exercise 27.15 for the case in which the...Ch. 27 - CP A 150-g ball containing 4.00 108 excess...Ch. 27 - An alpha particle (a He nucleus, containing two...Ch. 27 - In an experiment with cosmic rays, a vertical beam...Ch. 27 - BIO Cyclotrons are widely used in nuclear medicine...Ch. 27 - Prob. 27.21ECh. 27 - In a cyclotron, the orbital radius of protons with...Ch. 27 - An electron in the beam of a cathode-ray tube is...Ch. 27 - A beam of protons traveling at 1.20 km/s enters a...Ch. 27 - A proton (q = 1.60 1019 C, m = 1.67 1027 kg)...Ch. 27 - A singly charged ion of 7Li (an isotope of...Ch. 27 - Prob. 27.27ECh. 27 - Prob. 27.28ECh. 27 - A 150-V battery is connected across two parallel...Ch. 27 - A singly ionized (one electron removed) 40K atom...Ch. 27 - Singly ionized (one electron removed) atoms are...Ch. 27 - In the Bainbridge mass spectrometer (see Fig....Ch. 27 - Prob. 27.33ECh. 27 - A straight, 2.5-m wire carries a typical household...Ch. 27 - A long wire carrying 4.50 A of current makes two...Ch. 27 - An electromagnet produces a magnetic field of...Ch. 27 - A thin, 50.0-cm-long metal bar with mass 750 g...Ch. 27 - A straight, vertical wire carries a current of...Ch. 27 - Prob. 27.39ECh. 27 - The plane of a 5.0 cm X 8.0 cm rectangular loop of...Ch. 27 - The 20.0 cm 35.0 cm rectangular circuit shown in...Ch. 27 - A rectangular coil of wire, 22.0 cm by 35.0 cm and...Ch. 27 - CP A uniform rectangular coil of total mass 212 g...Ch. 27 - Both circular coils A and B (Fig. E27.44) have...Ch. 27 - Prob. 27.45ECh. 27 - Prob. 27.46ECh. 27 - Prob. 27.47ECh. 27 - A dc motor with its rotor and field coils...Ch. 27 - Figure E27.49 shows a portion of a silver ribbon...Ch. 27 - Prob. 27.50ECh. 27 - When a particle of charge q 0 moves with a...Ch. 27 - A particle with charge 7.26 108C is moving in a...Ch. 27 - Prob. 27.53PCh. 27 - Prob. 27.54PCh. 27 - Prob. 27.55PCh. 27 - The magnetic poles of a small cyclotron produce a...Ch. 27 - A particle with negative charge q and mass m =...Ch. 27 - A particle of charge q 0 is moving at speed in...Ch. 27 - Suppose the electric field between the plates in...Ch. 27 - Mass Spectrograph. A mass spectrograph is used to...Ch. 27 - A straight piece of conducting wire with mass M...Ch. 27 - CP A 2.60-N metal bar, 0.850 m long and having a...Ch. 27 - BIO Determining Diet. One method for determining...Ch. 27 - CP A plastic circular loop has radius R, and a...Ch. 27 - Prob. 27.65PCh. 27 - A wire 25.0 cm long lies along the z-axis and...Ch. 27 - A long wire carrying 6.50 A of current makes two...Ch. 27 - The rectangular loop shown in Fig. P27.68 is...Ch. 27 - Prob. 27.69PCh. 27 - Prob. 27.70PCh. 27 - The loop of wire shown in Fig. P27.71 forms a...Ch. 27 - CP A uniform bar has mass 0.0120 kg and is 30.0 cm...Ch. 27 - CALC A Voice Coil. It was shown in Section 27.7...Ch. 27 - Prob. 27.74PCh. 27 - CALC Force on a Current Loop in a Nonuniform...Ch. 27 - Quark Model of the Neutron. The neutron is a...Ch. 27 - A circular loop of wire with area A lies in the...Ch. 27 - DATA You are using a type of mass spectrometer to...Ch. 27 - Prob. 27.79PCh. 27 - DATA You are a technician testing the operation of...Ch. 27 - A particle with charge 2.15 C and mass 3.20 1011...Ch. 27 - Prob. 27.82CPCh. 27 - If a proton is exposed to an external magnetic...Ch. 27 - BIO MAGNETIC FIELDS AND MRI. Magnetic resonance...Ch. 27 - The large magnetic fields used in MRI can produce...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A circular coil 15.0 cm in radius and composed of 145 tightly wound turns carries a current of 2.50 A in the counterclockwise direction, where the plane of the coil makes an angle of 15.0 with the y axis (Fig. P30.73). The coil is free to rotate about the z axis and is placed in a region with a uniform magnetic field given by B=1.35jT. a. What is the magnitude of the magnetic torque on the coil? b. In what direction will the coil rotate? FIGURE P30.73arrow_forwardA wire is bent in the form of a square loop with sides of length L (Fig. P30.24). If a steady current I flows in the loop, determine the magnitude of the magnetic field at point P in the center of the square. FIGURE P30.24arrow_forwardA toroid has a major radius R and a minor radius r and is tightly wound with N turns of wire on a hollow cardboard torus. Figure P31.6 shows half of this toroid, allowing us to see its cross section. If R r, the magnetic field in the region enclosed by the wire is essentially the same as the magnetic field of a solenoid that has been bent into a large circle of radius R. Modeling the field as the uniform field of a long solenoid, show that the inductance of such a toroid is approximately L=120N2r2R Figure P31.6arrow_forward
- Two infinitely long current-carrying wires run parallel in the xy plane and are each a distance d = 11.0 cm from the y axis (Fig. P30.83). The current in both wires is I = 5.00 A in the negative y direction. a. Draw a sketch of the magnetic field pattern in the xz plane due to the two wires. What is the magnitude of the magnetic field due to the two wires b. at the origin and c. as a function of z along the z axis, at x = y = 0? FIGURE P30.83arrow_forwardSketch a plot of the magnitude of the magnetic field as a function of position r for a coax (Fig. P31.27).arrow_forwardA metal rod of mass m slides without friction along two parallel horizontal rails, separated by a distance l and connected by a resistor R, as shown in Figure P23.15. A uniform vertical magnetic field of magnitude B is applied perpendicular to the plane of the paper. The applied force shown in the figure acts only for a moment, to give die rod a speed v. In terms of m, l, R, B, and v, find the distance the rod will then slide as it coasts to a stop.arrow_forward
- Two long coaxial copper tubes, each of length L, are connected to a battery of voltage V. The inner tube has inner radius o and outer radius b, and the outer tube has inner radius c and outer radius d. The tubes are then disconnected from the battery and rotated in the same direction at angular speed of radians per second about their common axis. Find the magnetic field (a) at a point inside the space enclosed by the inner tube r d. (Hint: Hunk of copper tubes as a capacitor and find the charge density based on the voltage applied, Q=VC, C=20LIn(c/b) .)arrow_forwardA uniform magnetic field B=5.44104iT passes through a closed surface with a slanted top as shown in Figure P31.59. a. Given the dimensions and orientation of the closed surface shown, what is the magnetic flux through the slanted top of the surface? b. What is the net magnetic flux through the entire closed surface?arrow_forwardAssume the region to the right of a certain plane contains a uniform magnetic field of magnitude 1.00 mT and the field is zero in the region to the left of the plane as shown in Figure P22.71. An electron, originally traveling perpendicular to the boundary plane, passes into the region of the field. (a) Determine the time interval required for the electron to leave the field-filled region, noting that the electrons path is a semicircle. (b) Assuming the maximum depth of penetration into the field is 2.00 cm, find the kinetic energy of the electron.arrow_forward
- The homopolar generator, also called the Faraday disk, is a low-voltage, high-current electric generator. It consists of a rotating conducting disk with one stationary brush (a sliding electrical contact) at its axle and another at a point on its circumference as shown in Figure P23.21. A uniform magnetic field is applied perpendicular to the plane of the disk. Assume the field is 0.900 T, the angular speed is 3.20 103 rev/min, and the radius of the disk is 0.400 m. Find the emf generated between the brushes. When superconducting coils are used to produce a large magnetic field, a homopolar generator can have a power output of several megawatts. Such a generator is useful, for example, in purifying metals by electrolysis. If a voltage is applied to the output terminals of the generator, it runs in reverse as a homopolar motor capable of providing great torque, useful in ship propulsion.arrow_forwardThe homopolar generator, also called the Faraday disk, is a low-voltage, high-current electric generator. It consists of a rotating conducting disk with one stationary brush (a sliding electrical contact) at its axle and another at a point on its circumference as shown in Figure P31.33. A uniform magnetic field is applied perpendicular to the plane of the disk. Assume the field is 0.900 T, the angular speed is 3.20 103 rev/min, and the radius of the disk is 0.400 m. Find the emf generated between the brushes. When superconducting coils are used to produce a large magnetic field, a homopolar generator can have a power output of several megawatts. Such a generator is useful, for example, in purifying metals by electrolysis. If a voltage is applied to the output terminals of the generator, it runs in reverse as a homopolar motor capable of providing great torque, useful in ship propulsion.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning