The magnetic poles of a small cyclotron produce a magnetic field with magnitude 0.85 T. The poles have a radius of 0.40 m, which is the maximum radius of the orbits of the accelerated particles, (a) What is the maximum energy to which protons ( q = 1.60 × 10 −19 C, m = 1.67 × 10 −27 kg) can be accelerated by this cyclotron? Give your answer in electron volts and in joules, (b) What is the time for one revolution of a proton orbiting at this maximum radius? (c) What would the magnetic-field magnitude have to be for the maximum energy to which a proton can be accelerated t be twice that calculated in part (a)? (d) For B = 0.85 T, what is the maximum energy to which alpha particles (q = 3.20 X 10 -19 C, m = 6.64 X 10 -27 kg) can be accelerated by this cyclotron? How does this compare to the maximum energy for protons?
The magnetic poles of a small cyclotron produce a magnetic field with magnitude 0.85 T. The poles have a radius of 0.40 m, which is the maximum radius of the orbits of the accelerated particles, (a) What is the maximum energy to which protons ( q = 1.60 × 10 −19 C, m = 1.67 × 10 −27 kg) can be accelerated by this cyclotron? Give your answer in electron volts and in joules, (b) What is the time for one revolution of a proton orbiting at this maximum radius? (c) What would the magnetic-field magnitude have to be for the maximum energy to which a proton can be accelerated t be twice that calculated in part (a)? (d) For B = 0.85 T, what is the maximum energy to which alpha particles (q = 3.20 X 10 -19 C, m = 6.64 X 10 -27 kg) can be accelerated by this cyclotron? How does this compare to the maximum energy for protons?
The magnetic poles of a small cyclotron produce a magnetic field with magnitude 0.85 T. The poles have a radius of 0.40 m, which is the maximum radius of the orbits of the accelerated particles, (a) What is the maximum energy to which protons (q = 1.60 × 10−19C, m = 1.67 × 10−27 kg) can be accelerated by this cyclotron? Give your answer in electron volts and in joules, (b) What is the time for one revolution of a proton orbiting at this maximum radius? (c) What would the magnetic-field magnitude have to be for the maximum energy to which a proton can be accelerated t be twice that calculated in part (a)? (d) For B = 0.85 T, what is the maximum energy to which alpha particles (q = 3.20 X 10-19 C, m = 6.64 X 10-27 kg) can be accelerated by this cyclotron? How does this compare to the maximum energy for protons?
Example
Two charges, one with +10 μC of charge, and
another with - 7.0 μC of charge are placed in
line with each other and held at a fixed distance
of 0.45 m. Where can you put a 3rd charge of +5
μC, so that the net force on the 3rd charge is
zero?
*
Coulomb's Law Example
Three charges are positioned as seen below. Charge
1 is +2.0 μC and charge 2 is +8.0μC, and charge 3 is -
6.0MC.
What is the magnitude and the direction of the force
on charge 2 due to charges 1 and 3?
93
kq92
F
==
2
r13 = 0.090m
91
r12 = 0.12m
92
Coulomb's Constant: k = 8.99x10+9 Nm²/C²
✓
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.