CALC A Voice Coil . It was shown in Section 27.7 that the net force on a current loop in a uniform magnetic field is zero. The magnetic force on the voice coil of a loudspeaker (see Fig. 27.28) is nonzero because the magnetic field at the coil is not uniform. A voice coil in a loudspeaker has 50 turns of wire and a diameter of 1.56 cm, and the current in the coil is 0.950 A. Assume that the magnetic field at each point of the coil has a constant magnitude of 0.220 T and is directed at an angle of 60.0° outward from the normal to the plane of the coil ( Fig. P27.73 ). Let the axis of the coil be in the y -direction. The current in the coil is in the direction shown (counterclockwise as viewed from a point above the coil on the y -axis). Calculate the magnitude and direction of the net magnetic force on the coil. Figure P27.73
CALC A Voice Coil . It was shown in Section 27.7 that the net force on a current loop in a uniform magnetic field is zero. The magnetic force on the voice coil of a loudspeaker (see Fig. 27.28) is nonzero because the magnetic field at the coil is not uniform. A voice coil in a loudspeaker has 50 turns of wire and a diameter of 1.56 cm, and the current in the coil is 0.950 A. Assume that the magnetic field at each point of the coil has a constant magnitude of 0.220 T and is directed at an angle of 60.0° outward from the normal to the plane of the coil ( Fig. P27.73 ). Let the axis of the coil be in the y -direction. The current in the coil is in the direction shown (counterclockwise as viewed from a point above the coil on the y -axis). Calculate the magnitude and direction of the net magnetic force on the coil. Figure P27.73
CALC A Voice Coil. It was shown in Section 27.7 that the net force on a current loop in a uniform magnetic field is zero. The magnetic force on the voice coil of a loudspeaker (see Fig. 27.28) is nonzero because the magnetic field at the coil is not uniform. A voice coil in a loudspeaker has 50 turns of wire and a diameter of 1.56 cm, and the current in the coil is 0.950 A. Assume that the magnetic field at each point of the coil has a constant magnitude of 0.220 T and is directed at an angle of 60.0° outward from the normal to the plane of the coil (Fig. P27.73). Let the axis of the coil be in the y-direction. The current in the coil is in the direction shown (counterclockwise as viewed from a point above the coil on the y-axis). Calculate the magnitude and direction of the net magnetic force on the coil.
!
Required information
The radius of the Moon is 1.737 Mm and the distance between Earth and the Moon is 384.5 Mm.
The intensity of the moonlight incident on her eye is 0.0220 W/m². What is the intensity incident on her retina if the
diameter of her pupil is 6.54 mm and the diameter of her eye is 1.94 cm?
W/m²
Required information
An object is placed 20.0 cm from a converging lens with focal length 15.0 cm (see the figure, not drawn to scale). A
concave mirror with focal length 10.0 cm is located 76.5 cm to the right of the lens. Light goes through the lens, reflects
from the mirror, and passes through the lens again, forming a final image.
Converging
lens
Object
Concave
mirror
15.0 cm
-20.0 cm-
10.0 cm
d cm
d = 76.5.
What is the location of the final image?
cm to the left of the lens
!
Required information
A man requires reading glasses with +2.15-D refractive power to read a book held 40.0 cm away with a relaxed eye.
Assume the glasses are 1.90 cm from his eyes.
His uncorrected near point is 1.00 m. If one of the lenses is the one for distance vision, what should the refractive power of the other
lens (for close-up vision) in his bifocals be to give him clear vision from 25.0 cm to infinity?
2.98 D
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.