Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 27, Problem 11P
(a)
To determine
The current density in the beam assuming it is uniform throughout.
(b)
To determine
Electron density in the beam.
(c)
To determine
The time taken by the electrons to emerge out form the accelerator.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The electron beam emerging from a certain high energy electron accelerator has a circular cross-section of radius 1.00mm. (a) The beam current is 8.00mA. Find the current density in the beam assuming it is uniform throughout. (b) The speed of the electrons is so close to the speed of light that their speed can be taken as 300Mm/s with negligible error. Find the electron density in the beam. (c) Over what time interval does Avogadro’s number of electrons emerge from the accelerator?
The electron beam emerging from an accelerator has a circular cross section of radius 1 mm. If the beam current is 8 μA, and the speed of the electrons is 3*108 m/s, then the number density of the electrons (in 1010 m-3) in the beam is:
A high-energy proton accelerator produces a proton beam with a radius of r = 0.90 mm . The beam current is I = 9.00 μA and is constant. The charge density of the beam is n = 6.00 × 1011 protons per cubic meter. (a) What is the current density of the beam? (b) What is the drift velocity of the beam? (c) How much time does it take for 1.00 × 1010 protons to be emitted by the accelerator?
Chapter 27 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 27.1 - Consider positive and negative charges of equal...Ch. 27.2 - Prob. 27.2QQCh. 27.2 - Prob. 27.3QQCh. 27.4 - When does an incandescent lightbulb carry more...Ch. 27.6 - Prob. 27.5QQCh. 27 - Prob. 1OQCh. 27 - Prob. 2OQCh. 27 - Prob. 3OQCh. 27 - Prob. 4OQCh. 27 - Prob. 5OQ
Ch. 27 - Prob. 6OQCh. 27 - Prob. 7OQCh. 27 - Prob. 8OQCh. 27 - Prob. 9OQCh. 27 - Prob. 10OQCh. 27 - Prob. 11OQCh. 27 - Prob. 12OQCh. 27 - Prob. 13OQCh. 27 - Prob. 1CQCh. 27 - Prob. 2CQCh. 27 - Prob. 3CQCh. 27 - Prob. 4CQCh. 27 - Prob. 5CQCh. 27 - Prob. 6CQCh. 27 - Prob. 7CQCh. 27 - Prob. 8CQCh. 27 - Prob. 1PCh. 27 - A small sphere that carries a charge q is whirled...Ch. 27 - Prob. 3PCh. 27 - Prob. 4PCh. 27 - Prob. 5PCh. 27 - Prob. 6PCh. 27 - Prob. 7PCh. 27 - Prob. 8PCh. 27 - The quantity of charge q (in coulombs) that has...Ch. 27 - Prob. 10PCh. 27 - Prob. 11PCh. 27 - Prob. 12PCh. 27 - Prob. 13PCh. 27 - Prob. 14PCh. 27 - A wire 50.0 m long and 2.00 mm in diameter is...Ch. 27 - A 0.900-V potential difference is maintained...Ch. 27 - Prob. 17PCh. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Prob. 20PCh. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - Prob. 23PCh. 27 - Prob. 24PCh. 27 - Prob. 25PCh. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - While taking photographs in Death Valley on a day...Ch. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - Prob. 33PCh. 27 - Prob. 34PCh. 27 - At what temperature will aluminum have a...Ch. 27 - Assume that global lightning on the Earth...Ch. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - The potential difference across a resting neuron...Ch. 27 - Prob. 41PCh. 27 - Prob. 42PCh. 27 - Prob. 43PCh. 27 - Prob. 44PCh. 27 - Prob. 45PCh. 27 - Prob. 46PCh. 27 - Prob. 47PCh. 27 - Prob. 48PCh. 27 - Prob. 49PCh. 27 - Prob. 50PCh. 27 - Prob. 51PCh. 27 - Prob. 52PCh. 27 - Prob. 53PCh. 27 - Prob. 54PCh. 27 - Prob. 55PCh. 27 - Prob. 56PCh. 27 - Prob. 57APCh. 27 - Prob. 58APCh. 27 - Prob. 59APCh. 27 - Prob. 60APCh. 27 - Prob. 61APCh. 27 - Prob. 62APCh. 27 - Prob. 63APCh. 27 - Review. An office worker uses an immersion heater...Ch. 27 - Prob. 65APCh. 27 - Prob. 66APCh. 27 - Prob. 67APCh. 27 - Prob. 68APCh. 27 - Prob. 69APCh. 27 - Prob. 70APCh. 27 - Prob. 71APCh. 27 - Prob. 72APCh. 27 - Prob. 73APCh. 27 - Prob. 74APCh. 27 - Prob. 75APCh. 27 - Prob. 76APCh. 27 - Review. A parallel-plate capacitor consists of...Ch. 27 - The dielectric material between the plates of a...Ch. 27 - Prob. 79APCh. 27 - Prob. 80APCh. 27 - Prob. 81APCh. 27 - Prob. 82CPCh. 27 - Prob. 83CPCh. 27 - Material with uniform resistivity is formed into...Ch. 27 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure P21.6 represents a section of a conductor of nonuniform diameter carrying a current of I = 5.00 A. The radius of cross-section A1 is r1 = 0.400 cm. (a) What is the magnitude of the current density across A1? The radius r2 at A2 is larger than the radius r1 at A1. (b) Is the current at A2 larger, smaller, or the same? (c) Is the current density at A2 larger, smaller, or the same? Assume A2 = 4A1. Specify the (d) radius, (e) current, and (f) current density at A2. Figure P21.6arrow_forwardThe electron beam emerging from a certain high-energy electron accelerator has a circular cross section of radius 1.00 mm. The beam current is 8.00 μA. Find the current density in the beam assuming it is uniform throughout.arrow_forwardIn a hypothetical fusion research lab, high temperature helium gas is completely ionized and each helium atom is separated into two free electrons and the remaining positively charged nucleus, which is called an alpha particle. An applied electric field causes the alpha particles to drift to the east at 25.0 m/s while the electrons drift to the west at 88.0 m/s.The alpha particle density is 2.80 * 10^15cm3. What are (a) the net current density and (b) the current direction?arrow_forward
- In a large flashlight, the distance from the on-off switch and the light bulb is 9.9 cm. (a) Calculate the drift velocity for the electrons to drift this distance if the flashlight wires are made of copper, with a radius of 0.537 mm, and carry a current of 0.9 A? There are 8.49X1028 electrons per unit m³. Drift velocity, Vf. ✔m/s (b) How long does it take an electron to travel the distance from the on-off switch to the light-bulb? Time, t: min (c) Does this time seem reasonable? Does it explain why the flashlight starts instantly? Reflect on these questions.arrow_forwardA proton beam in an accelerator carries a current of 125 μA. If the beam is incident on a target, how many protons strike the target in a period of 23.0 s?arrow_forwardA 320-km-long high-voltage transmission line 2.00 cm in diameter carries a steady current of 1,070 A. If the conductor is copper with a free charge density of 8.50 x 1028 electrons per cubic meter, how many years does it take one electron to travel the full length of the cable? (Use 3.156 x 107 for the number of seconds in a year.) yrarrow_forward
- In a large flashlight, the distance from the on-off switch and the light bulb is 10.8 cm. (a) Calculate the drift velocity for the electrons to drift this distance if the flashlight wires are made of copper, with a radius of 0.511 mm, and carry a current of 1.1 A? There are 8.49X1028 electrons per unit m³. Drift velocity, Vi m/s (b) How long does it take an electron to travel the distance from the on-off switch to the light-bulb? Time, t: min (c) Does this time seem reasonable? Does it explain why the flashlight starts instantly? Reflect on these questions.arrow_forwardA 250-km-long high-voltage transmission line 2.00 cm in diameter carries a steady current of 1,070 A. If the conductor is copper with a free charge density of 8.50 x 1028 electrons per cubic meter, how many years does it take one electron to travel the full length of the cable? (Use 3.156 x 107 for the number of seconds in a year.)arrow_forwardSuppose you have a rod of pure silicon with a diameter of 2.79cm and a length of 20.6cm. These rods are often used in experiments, such as the Large Hadron Collider in France/Switzerland to detect high-energy particles, and they have a very high resistivity of 2300Ω⋅m. What current, in amperes, flows through the rod when a potential difference of 1.23* 10^3 V is applied between its ends ?arrow_forward
- In a cathode ray tube, electrons travel across a distance of 19.2 cm. Over this distance, the electric current is observed to be 18.5 μA over a time of 6.51 seconds. How many electrons traveled across this tube in this time?arrow_forwardA copper wire has a circular cross section with a radius of 1.01 mm. HINT (a) If the wire carries a current of 3.03 A, find the drift speed (in m/s) of electrons in the wire. (Take the density of mobile charge carriers in copper to be n = 1.10 x 1029 electrons/m³.) m/s (b) For the same wire size and current, find the drift speed (in m/s) of electrons if the wire is made of aluminum with n = 2.11 x 1029 electrons/m³. m/s Need Help? Read It Watch Itarrow_forwardA beam of protons is moving toward a target in a particle accelerator. This beam constitutes a current whose value is 0.40 mA with a potential difference of 35 kV. The target is an 18-gram block of copper, which is bombarded by these protons for 24 seconds. What is the change in temperature of the block of copper? Copper has a specific heat capacity of 385 J/(kg·°C).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Ohm's law Explained; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=PV8CMZZKrB4;License: Standard YouTube License, CC-BY