
Concept explainers
(a)
The magnitude and direction of the electric field in the wire.
(a)

Answer to Problem 67AP
The magnitude of the electric field in the wire is
Explanation of Solution
Given information: Length of the cylindrical wire is
Formula to calculate the magnitude of the electric field in the wire.
Here,
Substitute
Thus, the magnitude and direction of the electric field in the wire is
Conclusion:
Therefore, the magnitude and direction of the electric field in the wire is
(b)
The resistance of the wire.
(b)

Answer to Problem 67AP
The resistance of the wire is
Explanation of Solution
Given information: Length of the cylindrical wire is
Write the expression for the area of cross section of the cylindrical wire.
Here,
Substitute
Thus, the area of cross section of the cylindrical wire is
Formula to calculate the resistance of the wire.
Here,
Substitute
Thus, the resistance of the wire is
Conclusion:
Therefore, the resistance of the wire is
(c)
The magnitude and direction of the
(c)

Answer to Problem 67AP
The magnitude and direction of the electric current in the wire is
Explanation of Solution
Given information: Length of the cylindrical wire is
Formula to calculate the magnitude of the electric current in the wire.
Here,
Substitute
Thus, the magnitude and direction of the electric current in the wire is
Conclusion:
Therefore, the magnitude and direction of the electric current in the wire is
(d)
The current density in the wire.
(d)

Answer to Problem 67AP
The current density in the wire is
Explanation of Solution
Given information: Length of the cylindrical wire is
Formula to calculate the current density in the wire.
Here,
Substitute
Thus, the current density in the wire is
Conclusion:
Therefore, the current density in the wire is
(e)
To show: The expression for electric field in the wire is given by
(e)

Answer to Problem 67AP
The expression for electric field in the wire is given by
Explanation of Solution
Given information: Length of the cylindrical wire is
From equation (1), write the expression for the electric field in the wire.
Multiply by
From equation (5), formula to calculate the current density in the wire.
From equation (4), formula to calculate the magnitude of the electric current in the wire.
Substitute
From equation (3), formula to calculate the resistance of the wire.
Substitute
Substitute
Thus, the expression for electric field in the wire is given by
Conclusion:
Therefore, the expression for electric field in the wire is given by
Want to see more full solutions like this?
Chapter 27 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
- Sketch the harmonic.arrow_forwardFor number 11 please sketch the harmonic on graphing paper.arrow_forward# E 94 20 13. Time a) What is the frequency of the above wave? b) What is the period? c) Highlight the second cycle d) Sketch the sine wave of the second harmonic of this wave % 7 & 5 6 7 8 * ∞ Y U 9 0 0 P 150arrow_forward
- Show work using graphing paperarrow_forwardCan someone help me answer this physics 2 questions. Thank you.arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 12.0 μF.) a C 3.00 με Hh. 6.00 με 20.0 με HE (a) Find the equivalent capacitance between points a and b. 5.92 HF (b) Calculate the charge on each capacitor, taking AV ab = 16.0 V. 20.0 uF capacitor 94.7 6.00 uF capacitor 67.6 32.14 3.00 µF capacitor capacitor C ☑ με με The 3 µF and 12.0 uF capacitors are in series and that combination is in parallel with the 6 μF capacitor. What quantity is the same for capacitors in parallel? μC 32.14 ☑ You are correct that the charge on this capacitor will be the same as the charge on the 3 μF capacitor. μCarrow_forward
- In the pivot assignment, we observed waves moving on a string stretched by hanging weights. We noticed that certain frequencies produced standing waves. One such situation is shown below: 0 ст Direct Measurement ©2015 Peter Bohacek I. 20 0 cm 10 20 30 40 50 60 70 80 90 100 Which Harmonic is this? Do NOT include units! What is the wavelength of this wave in cm with only no decimal places? If the speed of this wave is 2500 cm/s, what is the frequency of this harmonic (in Hz, with NO decimal places)?arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forwardTwo conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forward
- Please see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forwardA spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





