Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 27, Problem 71AP
(a)
To determine
The resistance in terms of
(b)
To determine
The resistivity of water in terms of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You are working with an oceanographer who is studying how the ion concentration in seawater depends on depth. She shows you the device that she uses to measure the resistivity of water from a boat. It consists of a pair of concentric metallic cylinders at the end of a cable (as shown). Seawater flows freely between the two cylindrical shells. She makes a measurement by lowering the device into the water and applying a potential difference ΔV between the inner and outer cylinders. This produces an outward radial current I in the seawater between the shells. She shows you the current and voltage data for the water at a particular depth and is then called away to answer a long call on her cellphone about a laboratory issue back on the mainland. As she leaves, she says, “Have the resistivity of the water calculated when I get back.” She forgot to show you any tables or formulas to use to determine the resistivity, so you are on your own. Quick! Find an expression for the resistivity in…
The following table gives the lengths of three copper rods, their diameters, and the potential differences between their ends.
Rod
Length
Diameter
Potential Difference
3d
V.
2L
d
2V
3L
2d
2V
In the following questions, you will be asked to rank these rods. If multiple rods rank equally, use the same rank for each, then exclude
the intermediate ranking (i.e. if objects A, B, and C must be ranked, and A and B must both be ranked fırst, the ranking would be
A:Greatest, B:Greatest, C:Third greatest). If all rods rank equally, rank each as 'Greatest!.
Rank the rods according to the magnitude of the electric field within them.
Rod 1
Rod 2
Rod 3
123
can u help me? tnx
Chapter 27 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 27.1 - Consider positive and negative charges of equal...Ch. 27.2 - Prob. 27.2QQCh. 27.2 - Prob. 27.3QQCh. 27.4 - When does an incandescent lightbulb carry more...Ch. 27.6 - Prob. 27.5QQCh. 27 - Prob. 1OQCh. 27 - Prob. 2OQCh. 27 - Prob. 3OQCh. 27 - Prob. 4OQCh. 27 - Prob. 5OQ
Ch. 27 - Prob. 6OQCh. 27 - Prob. 7OQCh. 27 - Prob. 8OQCh. 27 - Prob. 9OQCh. 27 - Prob. 10OQCh. 27 - Prob. 11OQCh. 27 - Prob. 12OQCh. 27 - Prob. 13OQCh. 27 - Prob. 1CQCh. 27 - Prob. 2CQCh. 27 - Prob. 3CQCh. 27 - Prob. 4CQCh. 27 - Prob. 5CQCh. 27 - Prob. 6CQCh. 27 - Prob. 7CQCh. 27 - Prob. 8CQCh. 27 - Prob. 1PCh. 27 - A small sphere that carries a charge q is whirled...Ch. 27 - Prob. 3PCh. 27 - Prob. 4PCh. 27 - Prob. 5PCh. 27 - Prob. 6PCh. 27 - Prob. 7PCh. 27 - Prob. 8PCh. 27 - The quantity of charge q (in coulombs) that has...Ch. 27 - Prob. 10PCh. 27 - Prob. 11PCh. 27 - Prob. 12PCh. 27 - Prob. 13PCh. 27 - Prob. 14PCh. 27 - A wire 50.0 m long and 2.00 mm in diameter is...Ch. 27 - A 0.900-V potential difference is maintained...Ch. 27 - Prob. 17PCh. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Prob. 20PCh. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - Prob. 23PCh. 27 - Prob. 24PCh. 27 - Prob. 25PCh. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - While taking photographs in Death Valley on a day...Ch. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - Prob. 33PCh. 27 - Prob. 34PCh. 27 - At what temperature will aluminum have a...Ch. 27 - Assume that global lightning on the Earth...Ch. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - The potential difference across a resting neuron...Ch. 27 - Prob. 41PCh. 27 - Prob. 42PCh. 27 - Prob. 43PCh. 27 - Prob. 44PCh. 27 - Prob. 45PCh. 27 - Prob. 46PCh. 27 - Prob. 47PCh. 27 - Prob. 48PCh. 27 - Prob. 49PCh. 27 - Prob. 50PCh. 27 - Prob. 51PCh. 27 - Prob. 52PCh. 27 - Prob. 53PCh. 27 - Prob. 54PCh. 27 - Prob. 55PCh. 27 - Prob. 56PCh. 27 - Prob. 57APCh. 27 - Prob. 58APCh. 27 - Prob. 59APCh. 27 - Prob. 60APCh. 27 - Prob. 61APCh. 27 - Prob. 62APCh. 27 - Prob. 63APCh. 27 - Review. An office worker uses an immersion heater...Ch. 27 - Prob. 65APCh. 27 - Prob. 66APCh. 27 - Prob. 67APCh. 27 - Prob. 68APCh. 27 - Prob. 69APCh. 27 - Prob. 70APCh. 27 - Prob. 71APCh. 27 - Prob. 72APCh. 27 - Prob. 73APCh. 27 - Prob. 74APCh. 27 - Prob. 75APCh. 27 - Prob. 76APCh. 27 - Review. A parallel-plate capacitor consists of...Ch. 27 - The dielectric material between the plates of a...Ch. 27 - Prob. 79APCh. 27 - Prob. 80APCh. 27 - Prob. 81APCh. 27 - Prob. 82CPCh. 27 - Prob. 83CPCh. 27 - Material with uniform resistivity is formed into...Ch. 27 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You've been asked to determine whether a new material your company has made is ohmic and, if so, to measure its electrical conductivity. Taking a 0.50 mm X 1.0 mm x 45 mm sample, you wire the ends of the long axis to a power supply and then measure the current for several different potential differences. Your data are as follows: Voltage AV (V) Current I (A) 0.200 0.47 0.400 1.06 0.600 1.53 0.800 1.97 Part A You want to determine if the material is ohmic and its conductivity o by graphing the data. Select the appropriate variables to graph on each axis that will produce a straight-line graph with a slope and intercept that will allow you to determine these properties. Sort all variables into the appropriate bins. Horizontal axis Submit 1 AV Request Answer (AV)² Vertical axis AV I Not used Reset Helparrow_forwardA conducting rod with a circular cross-section (this rod is a cylinder) has a radius of 10 mm and is 2 metres long. The rod is made of aluminum, so its conductivity is 3.6 x 10' S/m. A potential difference (voltage) is applied at both ends of this rod and the current is I = 90 A. That's a lot of current! a. What is the resistance of the rod, when measured from one end to the other? b. Calculate the current density in the rod along its length. Determine the electric field amplitude at all locations within the rod. c. d. What is the electric potential difference between the two ends of the rod.arrow_forwardA conducting spherical electrode of radius a is suspended with its center at a height h above the bottom of a large metal tank filled with a conducting medium having a conductivity s. Derive a formula for the resistance between the electrode and the metal tank. The tank is large enough to be considered as infinite. The electrode and the tank may be assumed to be made of perfect conductors.arrow_forward
- Plethysmographs are devices used for measuring changes in the volume of internal organs or limbs. In one form of this device, a rubber capillary tube with an inside diameter of 1.00 mm is filled with mercury at 20.0°C. The resistance of the mercury is measured with the aid of electrodes sealed into the ends of the tube. If 100 cm of the tube is wound in a helix around a patient’s upper arm, the blood flow during a heartbeat causes the arm to expand, stretching the length of the tube by 0.040 0 cm. From this observation and assuming cylindrical symmetry, you can find the change in volume of the arm, which gives an indication of blood flow. Taking the resistivity of mercury to be 9.58 x 10-7 Ω ⋅ m, calculate (a) the resistance of the mercury and (b) the fractional change in resistance during the heartbeat. Hint: The fraction by which the cross-sectional area of the mercury column decreases is the fraction by which the length increases because the volume of mercury is constant.arrow_forwardYou are working at a company that manufactures electrical wire. Gold is the most ductile of all metals: it can be stretched into incredibly long, thin wires. The company has developed a new technique that will stretch 1.00 g of gold into a wire of length L = 2.40 km and uniform diameter. Your supervisor gives you the task of determining the resistance of such a wire at 20.0°C.arrow_forwardTwo concentric, metal spherical shells of radii a = 4.0 cm and b = 8.0 cm are separated by aluminum as shown in Figure P28.33. The inner sphere has a total charge Q at any time. If the two spheres are maintained at a potential difference of 2.0 V via an external source, calculate the current from one sphere to the other.arrow_forward
- An oceanographer is studying how the ion concentration in seawater depends on depth. She makes a measurement by lowering into the water a pair of concentric metallic cylinders (Fig. P21.66) at the end of a cable and taking data to determine the resistance between these electrodes as a function of depth. The water between the two cylinders forms a cylindrical shell of inner radius ra, outer radius rb, and length L much larger than rb. The scientist applies a potential difference V between the inner and outer surfaces, producing an outward radial current I. Let represent the resistivity of the water. (a) Find the resistance of the water between the cylinders in terms of L, , ra, an rb. (b) Express the resistivity of the water in terms of the measured quantities L, ra, rb, V, and I. Figure P21.66arrow_forward(a) During surgery, a current as small as 20.0A applied directly to the heart may cause ventricular fibrillation. If the resistance of the exposed heart is 300 what is the smallest voltage that poses thisdanger? (b) Does your answer imply that special electrical safetyprecautions are needed?arrow_forwardAn aluminum wire 1.628 mm in diameter (14-gauge) carries a current of 3.00 amps, (a) What is the absolute value of the charge density in the wire? (b) What is the drift velocity of the electrons? (c) What would be the drift velocity if the same gauge copper were used instead of aluminum? The density of copper is 8.96 g/cm3 and thedensity of aluminum is 2.70 g/cm3. The molar mass ofaluminum is 26.98 g/mol and the molar mass of copper is 63.5 g/mol. Assume each atom of metal contributes one free electron.arrow_forward
- The rod in figure P27.24 is made of two materials. The figure is not drawn to scale. Each conductor has a square cross section 2.00 mm on a side. The first material has a resistivity of 3.50 x 10-3 N.m and is 25 cm long, while the second material has a resistivity of 6.00 × 10-3 N.m and is 40 cm long. What is the resistance between the ends of the rod? 25.0 cm 40.0 cmarrow_forwardWhat is the resistance of a 21-cm-long column of blood in a 0.80-cm- diameter femoral artery? The conductivity of blood is 0.63 −¹ m¯¹.arrow_forwardSilver wire has a cross-sectional area A = 2.0 mm2. A total of 9.4 x 10 electrons pass through the wire in 3.0 s. The conduction electron density in silver is 5.8 x 1028 electrons/m. What is the drift velocity of these electrons?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY