(a)
A spreadsheet for
(a)
Answer to Problem 80AP
A spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.015932 | 25.1067 |
0.405 | 0.019602 | 20.66116 |
0.41 | 0.024117 | 17.00046 |
0.415 | 0.029673 | 13.98578 |
0.42 | 0.036508 | 11.50433 |
0.425 | 0.044918 | 9.461686 |
0.43 | 0.055264 | 7.780834 |
0.435 | 0.067995 | 6.397529 |
0.44 | 0.083657 | 5.259572 |
0.445 | 0.102927 | 4.323453 |
0.45 | 0.126637 | 3.553464 |
0.455 | 0.155807 | 2.92028 |
0.46 | 0.191697 | 2.39962 |
0.465 | 0.235855 | 1.97155 |
0.47 | 0.290184 | 1.619662 |
0.475 | 0.357027 | 1.330432 |
0.48 | 0.439268 | 1.092727 |
0.485 | 0.540454 | 0.897394 |
0.495 | 0.818117 | 0.605048 |
0.5 | 1.006569 | 0.496737 |
0.505 | 1.238432 | 0.407774 |
0.51 | 1.523704 | 0.334711 |
0.515 | 1.874688 | 0.274712 |
0.52 | 2.306521 | 0.225448 |
0.525 | 2.837827 | 0.185001 |
0.53 | 3.491518 | 0.151796 |
0.535 | 4.295787 | 0.124541 |
0.54 | 5.285319 | 0.10217 |
0.545 | 6.502788 | 0.08381 |
0.55 | 8.000701 | 0.068744 |
0.555 | 9.843657 | 0.056381 |
0.56 | 12.11114 | 0.046238 |
0.565 | 14.90093 | 0.037917 |
0.57 | 18.33335 | 0.031091 |
0.575 | 22.55642 | 0.025492 |
0.58 | 27.75228 | 0.020899 |
0.585 | 34.145 | 0.017133 |
0.59 | 42.01028 | 0.014044 |
0.595 | 51.68732 | 0.011512 |
0.6 | 63.59346 | 0.009435 |
A spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.005274 | 75.84672 |
0.405 | 0.0064 | 63.28565 |
0.41 | 0.007766 | 52.79679 |
0.415 | 0.009423 | 44.03979 |
0.42 | 0.011435 | 36.72991 |
0.425 | 0.013876 | 30.62901 |
0.43 | 0.016838 | 25.53795 |
0.435 | 0.020432 | 21.29022 |
0.44 | 0.024793 | 17.74668 |
0.445 | 0.030086 | 14.79101 |
0.45 | 0.036508 | 12.32605 |
0.455 | 0.044301 | 10.27061 |
0.46 | 0.053758 | 8.556892 |
0.465 | 0.065233 | 7.128278 |
0.47 | 0.079158 | 5.937492 |
0.475 | 0.096055 | 4.945067 |
0.48 | 0.11656 | 4.118066 |
0.485 | 0.141441 | 3.428998 |
0.495 | 0.20827 | 2.376718 |
0.5 | 0.252728 | 1.978408 |
0.505 | 0.306677 | 1.646686 |
0.51 | 0.372141 | 1.370449 |
0.515 | 0.451579 | 1.140443 |
0.52 | 0.547974 | 0.948949 |
0.525 | 0.664947 | 0.789537 |
0.53 | 0.806888 | 0.656844 |
0.535 | 0.979129 | 0.546404 |
0.54 | 1.188137 | 0.454493 |
0.545 | 1.44176 | 0.37801 |
0.55 | 1.749522 | 0.314372 |
0.555 | 2.122981 | 0.261425 |
0.56 | 2.576159 | 0.217378 |
0.565 | 3.126073 | 0.180738 |
0.57 | 3.793374 | 0.150262 |
0.575 | 4.603119 | 0.124915 |
0.58 | 5.585715 | 0.103836 |
0.585 | 6.778058 | 0.086308 |
0.59 | 8.224923 | 0.071733 |
0.595 | 9.98064 | 0.059615 |
0.6 | 12.11114 | 0.049541 |
A spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.002004 | 199.5582 |
0.405 | 0.002403 | 168.5349 |
0.41 | 0.002881 | 142.3127 |
0.415 | 0.003454 | 120.1526 |
0.42 | 0.004141 | 101.4283 |
0.425 | 0.004964 | 85.60991 |
0.43 | 0.005952 | 72.24847 |
0.435 | 0.007135 | 60.96416 |
0.44 | 0.008554 | 51.43551 |
0.445 | 0.010256 | 43.39059 |
0.45 | 0.012295 | 36.59933 |
0.455 | 0.014741 | 30.86719 |
0.46 | 0.017672 | 26.02967 |
0.465 | 0.021187 | 21.9477 |
0.47 | 0.0254 | 18.50372 |
0.475 | 0.030452 | 15.59839 |
0.48 | 0.036508 | 13.14778 |
0.485 | 0.043769 | 11.08098 |
0.495 | 0.062909 | 7.868498 |
0.5 | 0.07542 | 6.629515 |
0.505 | 0.09042 | 5.585066 |
0.51 | 0.108402 | 4.704703 |
0.515 | 0.129961 | 3.962729 |
0.52 | 0.155807 | 3.337456 |
0.525 | 0.186794 | 2.810585 |
0.53 | 0.223943 | 2.366674 |
0.535 | 0.26848 | 1.992698 |
0.54 | 0.321875 | 1.67767 |
0.545 | 0.385889 | 1.412324 |
0.55 | 0.462633 | 1.188846 |
0.555 | 0.554641 | 1.000647 |
0.56 | 0.664947 | 0.842173 |
0.565 | 0.79719 | 0.70874 |
0.57 | 0.955733 | 0.596401 |
0.575 | 1.145807 | 0.50183 |
0.58 | 1.373682 | 0.422223 |
0.585 | 1.646877 | 0.355218 |
0.59 | 1.974404 | 0.298824 |
0.595 | 2.367069 | 0.251366 |
0.6 | 2.837827 | 0.211429 |
Explanation of Solution
Given information: Th first symbol i.e. Euler’s number is
It is given that the expression for the current-voltage characteristic curve for a semiconductor diode as a function of temperature
Here,
Formula to calculate the resistance across the diode is,
Here,
The value of magnitude of electron charge is
The value of Boltzmann’s constant is
The value of voltage across the diode varies from
From equation (1), formula to calculate the current across a semiconductor diode temperature
Here,
Substitute
Thus, the current across a semiconductor diode temperature
From equation (2), formula to calculate the resistance across the diode is,
Here,
Substitute
Thus, the resistance across the diode is
As the value of voltage across the diode varies from
Thus, a spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.015932 | 25.1067 |
0.405 | 0.019602 | 20.66116 |
0.41 | 0.024117 | 17.00046 |
0.415 | 0.029673 | 13.98578 |
0.42 | 0.036508 | 11.50433 |
0.425 | 0.044918 | 9.461686 |
0.43 | 0.055264 | 7.780834 |
0.435 | 0.067995 | 6.397529 |
0.44 | 0.083657 | 5.259572 |
0.445 | 0.102927 | 4.323453 |
0.45 | 0.126637 | 3.553464 |
0.455 | 0.155807 | 2.92028 |
0.46 | 0.191697 | 2.39962 |
0.465 | 0.235855 | 1.97155 |
0.47 | 0.290184 | 1.619662 |
0.475 | 0.357027 | 1.330432 |
0.48 | 0.439268 | 1.092727 |
0.485 | 0.540454 | 0.897394 |
0.495 | 0.818117 | 0.605048 |
0.5 | 1.006569 | 0.496737 |
0.505 | 1.238432 | 0.407774 |
0.51 | 1.523704 | 0.334711 |
0.515 | 1.874688 | 0.274712 |
0.52 | 2.306521 | 0.225448 |
0.525 | 2.837827 | 0.185001 |
0.53 | 3.491518 | 0.151796 |
0.535 | 4.295787 | 0.124541 |
0.54 | 5.285319 | 0.10217 |
0.545 | 6.502788 | 0.08381 |
0.55 | 8.000701 | 0.068744 |
0.555 | 9.843657 | 0.056381 |
0.56 | 12.11114 | 0.046238 |
0.565 | 14.90093 | 0.037917 |
0.57 | 18.33335 | 0.031091 |
0.575 | 22.55642 | 0.025492 |
0.58 | 27.75228 | 0.020899 |
0.585 | 34.145 | 0.017133 |
0.59 | 42.01028 | 0.014044 |
0.595 | 51.68732 | 0.011512 |
0.6 | 63.59346 | 0.009435 |
From equation (1), formula to calculate the current across a semiconductor diode temperature
Here,
Substitute
Thus, the current across a semiconductor diode temperature
From equation (2), formula to calculate the resistance across the diode is,
Here,
Substitute
Thus, the resistance across the diode is
As the value of voltage across the diode varies from
Thus, a spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.005274 | 75.84672 |
0.405 | 0.0064 | 63.28565 |
0.41 | 0.007766 | 52.79679 |
0.415 | 0.009423 | 44.03979 |
0.42 | 0.011435 | 36.72991 |
0.425 | 0.013876 | 30.62901 |
0.43 | 0.016838 | 25.53795 |
0.435 | 0.020432 | 21.29022 |
0.44 | 0.024793 | 17.74668 |
0.445 | 0.030086 | 14.79101 |
0.45 | 0.036508 | 12.32605 |
0.455 | 0.044301 | 10.27061 |
0.46 | 0.053758 | 8.556892 |
0.465 | 0.065233 | 7.128278 |
0.47 | 0.079158 | 5.937492 |
0.475 | 0.096055 | 4.945067 |
0.48 | 0.11656 | 4.118066 |
0.485 | 0.141441 | 3.428998 |
0.495 | 0.20827 | 2.376718 |
0.5 | 0.252728 | 1.978408 |
0.505 | 0.306677 | 1.646686 |
0.51 | 0.372141 | 1.370449 |
0.515 | 0.451579 | 1.140443 |
0.52 | 0.547974 | 0.948949 |
0.525 | 0.664947 | 0.789537 |
0.53 | 0.806888 | 0.656844 |
0.535 | 0.979129 | 0.546404 |
0.54 | 1.188137 | 0.454493 |
0.545 | 1.44176 | 0.37801 |
0.55 | 1.749522 | 0.314372 |
0.555 | 2.122981 | 0.261425 |
0.56 | 2.576159 | 0.217378 |
0.565 | 3.126073 | 0.180738 |
0.57 | 3.793374 | 0.150262 |
0.575 | 4.603119 | 0.124915 |
0.58 | 5.585715 | 0.103836 |
0.585 | 6.778058 | 0.086308 |
0.59 | 8.224923 | 0.071733 |
0.595 | 9.98064 | 0.059615 |
0.6 | 12.11114 | 0.049541 |
From equation (1), formula to calculate the current across a semiconductor diode temperature
Here,
Substitute
Thus, the current across a semiconductor diode temperature
From equation (2), formula to calculate the resistance across the diode is,
Here,
Substitute
Thus, the resistance across the diode is
As the value of voltage across the diode varies from
Thus, a spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.002004 | 199.5582 |
0.405 | 0.002403 | 168.5349 |
0.41 | 0.002881 | 142.3127 |
0.415 | 0.003454 | 120.1526 |
0.42 | 0.004141 | 101.4283 |
0.425 | 0.004964 | 85.60991 |
0.43 | 0.005952 | 72.24847 |
0.435 | 0.007135 | 60.96416 |
0.44 | 0.008554 | 51.43551 |
0.445 | 0.010256 | 43.39059 |
0.45 | 0.012295 | 36.59933 |
0.455 | 0.014741 | 30.86719 |
0.46 | 0.017672 | 26.02967 |
0.465 | 0.021187 | 21.9477 |
0.47 | 0.0254 | 18.50372 |
0.475 | 0.030452 | 15.59839 |
0.48 | 0.036508 | 13.14778 |
0.485 | 0.043769 | 11.08098 |
0.495 | 0.062909 | 7.868498 |
0.5 | 0.07542 | 6.629515 |
0.505 | 0.09042 | 5.585066 |
0.51 | 0.108402 | 4.704703 |
0.515 | 0.129961 | 3.962729 |
0.52 | 0.155807 | 3.337456 |
0.525 | 0.186794 | 2.810585 |
0.53 | 0.223943 | 2.366674 |
0.535 | 0.26848 | 1.992698 |
0.54 | 0.321875 | 1.67767 |
0.545 | 0.385889 | 1.412324 |
0.55 | 0.462633 | 1.188846 |
0.555 | 0.554641 | 1.000647 |
0.56 | 0.664947 | 0.842173 |
0.565 | 0.79719 | 0.70874 |
0.57 | 0.955733 | 0.596401 |
0.575 | 1.145807 | 0.50183 |
0.58 | 1.373682 | 0.422223 |
0.585 | 1.646877 | 0.355218 |
0.59 | 1.974404 | 0.298824 |
0.595 | 2.367069 | 0.251366 |
0.6 | 2.837827 | 0.211429 |
Conclusion:
Therefore, a spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.015932 | 25.1067 |
0.405 | 0.019602 | 20.66116 |
0.41 | 0.024117 | 17.00046 |
0.415 | 0.029673 | 13.98578 |
0.42 | 0.036508 | 11.50433 |
0.425 | 0.044918 | 9.461686 |
0.43 | 0.055264 | 7.780834 |
0.435 | 0.067995 | 6.397529 |
0.44 | 0.083657 | 5.259572 |
0.445 | 0.102927 | 4.323453 |
0.45 | 0.126637 | 3.553464 |
0.455 | 0.155807 | 2.92028 |
0.46 | 0.191697 | 2.39962 |
0.465 | 0.235855 | 1.97155 |
0.47 | 0.290184 | 1.619662 |
0.475 | 0.357027 | 1.330432 |
0.48 | 0.439268 | 1.092727 |
0.485 | 0.540454 | 0.897394 |
0.495 | 0.818117 | 0.605048 |
0.5 | 1.006569 | 0.496737 |
0.505 | 1.238432 | 0.407774 |
0.51 | 1.523704 | 0.334711 |
0.515 | 1.874688 | 0.274712 |
0.52 | 2.306521 | 0.225448 |
0.525 | 2.837827 | 0.185001 |
0.53 | 3.491518 | 0.151796 |
0.535 | 4.295787 | 0.124541 |
0.54 | 5.285319 | 0.10217 |
0.545 | 6.502788 | 0.08381 |
0.55 | 8.000701 | 0.068744 |
0.555 | 9.843657 | 0.056381 |
0.56 | 12.11114 | 0.046238 |
0.565 | 14.90093 | 0.037917 |
0.57 | 18.33335 | 0.031091 |
0.575 | 22.55642 | 0.025492 |
0.58 | 27.75228 | 0.020899 |
0.585 | 34.145 | 0.017133 |
0.59 | 42.01028 | 0.014044 |
0.595 | 51.68732 | 0.011512 |
0.6 | 63.59346 | 0.009435 |
A spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.005274 | 75.84672 |
0.405 | 0.0064 | 63.28565 |
0.41 | 0.007766 | 52.79679 |
0.415 | 0.009423 | 44.03979 |
0.42 | 0.011435 | 36.72991 |
0.425 | 0.013876 | 30.62901 |
0.43 | 0.016838 | 25.53795 |
0.435 | 0.020432 | 21.29022 |
0.44 | 0.024793 | 17.74668 |
0.445 | 0.030086 | 14.79101 |
0.45 | 0.036508 | 12.32605 |
0.455 | 0.044301 | 10.27061 |
0.46 | 0.053758 | 8.556892 |
0.465 | 0.065233 | 7.128278 |
0.47 | 0.079158 | 5.937492 |
0.475 | 0.096055 | 4.945067 |
0.48 | 0.11656 | 4.118066 |
0.485 | 0.141441 | 3.428998 |
0.495 | 0.20827 | 2.376718 |
0.5 | 0.252728 | 1.978408 |
0.505 | 0.306677 | 1.646686 |
0.51 | 0.372141 | 1.370449 |
0.515 | 0.451579 | 1.140443 |
0.52 | 0.547974 | 0.948949 |
0.525 | 0.664947 | 0.789537 |
0.53 | 0.806888 | 0.656844 |
0.535 | 0.979129 | 0.546404 |
0.54 | 1.188137 | 0.454493 |
0.545 | 1.44176 | 0.37801 |
0.55 | 1.749522 | 0.314372 |
0.555 | 2.122981 | 0.261425 |
0.56 | 2.576159 | 0.217378 |
0.565 | 3.126073 | 0.180738 |
0.57 | 3.793374 | 0.150262 |
0.575 | 4.603119 | 0.124915 |
0.58 | 5.585715 | 0.103836 |
0.585 | 6.778058 | 0.086308 |
0.59 | 8.224923 | 0.071733 |
0.595 | 9.98064 | 0.059615 |
0.6 | 12.11114 | 0.049541 |
A spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.002004 | 199.5582 |
0.405 | 0.002403 | 168.5349 |
0.41 | 0.002881 | 142.3127 |
0.415 | 0.003454 | 120.1526 |
0.42 | 0.004141 | 101.4283 |
0.425 | 0.004964 | 85.60991 |
0.43 | 0.005952 | 72.24847 |
0.435 | 0.007135 | 60.96416 |
0.44 | 0.008554 | 51.43551 |
0.445 | 0.010256 | 43.39059 |
0.45 | 0.012295 | 36.59933 |
0.455 | 0.014741 | 30.86719 |
0.46 | 0.017672 | 26.02967 |
0.465 | 0.021187 | 21.9477 |
0.47 | 0.0254 | 18.50372 |
0.475 | 0.030452 | 15.59839 |
0.48 | 0.036508 | 13.14778 |
0.485 | 0.043769 | 11.08098 |
0.495 | 0.062909 | 7.868498 |
0.5 | 0.07542 | 6.629515 |
0.505 | 0.09042 | 5.585066 |
0.51 | 0.108402 | 4.704703 |
0.515 | 0.129961 | 3.962729 |
0.52 | 0.155807 | 3.337456 |
0.525 | 0.186794 | 2.810585 |
0.53 | 0.223943 | 2.366674 |
0.535 | 0.26848 | 1.992698 |
0.54 | 0.321875 | 1.67767 |
0.545 | 0.385889 | 1.412324 |
0.55 | 0.462633 | 1.188846 |
0.555 | 0.554641 | 1.000647 |
0.56 | 0.664947 | 0.842173 |
0.565 | 0.79719 | 0.70874 |
0.57 | 0.955733 | 0.596401 |
0.575 | 1.145807 | 0.50183 |
0.58 | 1.373682 | 0.422223 |
0.585 | 1.646877 | 0.355218 |
0.59 | 1.974404 | 0.298824 |
0.595 | 2.367069 | 0.251366 |
0.6 | 2.837827 | 0.211429 |
(b)
To draw: The graph for
(b)
Answer to Problem 80AP
The graph for
The graph for
The graph for
Explanation of Solution
Given information: The first symbol i.e. Euler’s number is
The different values of the
Thus, the graph for
The different values of the
Thus, the graph for
The different values of the
The graph for
Conclusion:
Therefore, the graph for
Therefore, the graph for
Therefore, the graph for
Want to see more full solutions like this?
Chapter 27 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
- Problem 3: A 1.2 g wire has a density of 2.7 g/cm3 and a resistivity of 2.7 × 10−8 Ωm. The wire has a resistance of 15 Ω. a) How long is the wire? b) The wire is made up of atoms with valence 1 and molar mass 26.98 g/mol. What is the drift speed of the electrons when there is a voltage drop of 30 V across the wire?arrow_forwardThere is a sphere-sphere electrode system in the insulation medium of air (E=30 kV/cm), in which radii of the spheres are r1. After, by changing radii of the spheres to r2, a new sphere-sphere electrode system, in the same insulation medium, is made. The graphs of breakdown voltage by changing electrode separation for both electrode systems are shown. The correction factor is 90%. Find the ratio of r2 to r̟. Spherical Spherical electrode electrode 200 180 160 140 120 100 with radius rl with radius r2 80 60 40 20 2 4 9 10 11 12 13 14 15 16 17 18 19 20 d (cm) Breakdown Voltage (kV)arrow_forwardA busbar made out of copper has a length of 12 inches. Its surface dimension is 1 cm by 1 cm. If the material has free electron of 10^24 per cubic meter calculate the voltage magnitude in the material when a current of of 0.2 A produces mean time of collisions between electrons of 2.48 x 10 ^-14 seconds. (note: the mass of electron is 9.11 x 10^-31 kg). Your answerarrow_forward
- A constant diffusion current of electrons is established through a silicon semiconductor material. The value of current density is Jn= –0.8 A/cm2. The electron concentration at x=0 is n(0)=1.5x1015 cm–3. The diffusion constant of electrons and holes are 35 and 14 cm2/s, respectively . Determine the hole drift current densityarrow_forward: A conductive wire has a resistivity of (0.649x10-8(2.m)) at room temperature are (5.8x10- ) conduction electron/ms.Calculate the mobility, resistivity and relaxation time of electrons. Ql:arrow_forwardA wire with a radius of 2.22mm is made of a conducting material that has an atomic mass of 72.0 grams/mole and a mass density of 6.17x103 kg/m3. You can assume that each atom of the material has one free electron associated with it. What is the drift speed vd in a 19.3 cm long section of wire that is carrying 664 Amps? Assume 3 significant digits and units of mm/s.arrow_forward
- A new material is found to be superconducting below 77 K. How much resistance will a 75 mm long sample of this material have if it is at a temperature of 69.3 K while connected to a 6.4 V AC-power supply? R = How much thermal energy will it generate?Thermal energy generated =arrow_forwardIf R=Ro[1+ a(T - To)], find: (a) the temperature coefficient of resistivity, a, in terms of R, Ro, T, and To. (b) the temperature coefficient of resistivity for a resistor with resistances of 8.2 at 33°C and 9.35 at 70°C.arrow_forwardResistivity in metals increases with temperature according to the equation: ρ(T) = ρ0[1 + α(T - T0)] where α is the temperature coeficcient of restivity, and ρ0 is the restivity at the reference temperature T0. For a particular wire, the temperature coeficcient of restivity is α = 3.83 X 10-3 °C-1, and the restivity is ρ0 = 7.71 X 10-7 Ωm at the reference temperature T0 = 297°C. Find an expression for the temperature T2, at which the resistance of a particular wire will be twice as high as it is at the reference temperature T0. (Both temperatures are in degrees Celsius) Use this expression to find the temperature in degrees Celsius for T2. If the wire has a length of 1.00m and it has a circular cross section with a radius of 1.00cm, what is the resistance in ohms, at a temperature which is twice the reference temperature, T = 2T0 ?arrow_forward
- The relation between resistance R and temperature T for a thermistor (a device that measures temperature) closely follows R = Ro e[Beta (1/T - 1/To)] where R is the resistance in ohms measured at temperature K, and Beta is a material constant. What are the units of Beta and Ro? Clearly show how you decided on your answer.arrow_forwardSilicon is a semiconducting metal with a resistivity of 640 Ω · m. (a) Determine the current per unit area through a 5.02 V silicon junction with a length of 1.64 mm. (Enter your answer in A/m2.) (b) Find the current (in A) through the junction if its cross-sectional area is 3.00 ✕ 10−5 m2.arrow_forwardA copper wire is 10 cm long and has a cross-sectional area of 0.4 mm^2 and the resistance of the wire is 0.4 ohms. The wire is connected to a source with a voltage of 10 v, what is the movement, knowing that the density of conduction electrons for copper is 8.5 x 10^28 m^-3 8.5 x 10^4 63-5 For the same wire in the previous question, what is the fersi level if the atomic weight of copper is 0.5 x 10^(-5) 0.94 x 10^(-4) 7.03| ev 0.36 x 10^(-4) 7.01eV 7.05 eV 7.021 evarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning