College Physics:
11th Edition
ISBN: 9781305965515
Author: SERWAY, Raymond A.
Publisher: Brooks/Cole Pub Co
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 27, Problem 11CQ
To determine
When are the electrons emitted from the material.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Assume that the total energy E of an electron greatly exceeds its rest energy E0. If a photon has a wavelength equal to the de Broglie wavelength of the electron, what is the photon’s energy? Repeat the problem assuming E= 2E0 for the electron.
The photoelectric equation for the kinetic energy of a photoelectron is, following Einstein, E <
hf – W, whereh is Planck's constant, f is the frequency of the light, and W is the work-function.
Sodium has W = 3.2×10-19 J. When sodium is illuminated by monochromatic light of a particular
frequency, electrons are emitted with speeds up to 8 x 105 ms-1.
a) Calculate the wavelength of the light.
b) Calculate the stopping potential.
An electron has a de Broglie wavelength λ = 4.5×10−10 m . h=6.626×10−34 J⋅s, e=1.602×10−19 C, me=9.109×10−31 kg. What is its momentum? (p =h/)
Chapter 27 Solutions
College Physics:
Ch. 27.5 - Prob. 27.1QQCh. 27.5 - Prob. 27.2QQCh. 27.5 - Prob. 27.3QQCh. 27.6 - Prob. 27.4QQCh. 27.6 - Prob. 27.5QQCh. 27 - Prob. 1CQCh. 27 - Prob. 2CQCh. 27 - Prob. 3CQCh. 27 - Prob. 4CQCh. 27 - Prob. 5CQ
Ch. 27 - Prob. 6CQCh. 27 - Prob. 7CQCh. 27 - Prob. 8CQCh. 27 - Prob. 9CQCh. 27 - Prob. 10CQCh. 27 - Prob. 11CQCh. 27 - Prob. 12CQCh. 27 - Prob. 13CQCh. 27 - Prob. 14CQCh. 27 - Prob. 15CQCh. 27 - Prob. 16CQCh. 27 - Prob. 1PCh. 27 - Prob. 2PCh. 27 - Prob. 3PCh. 27 - Prob. 4PCh. 27 - Prob. 5PCh. 27 - Prob. 6PCh. 27 - Prob. 7PCh. 27 - Prob. 8PCh. 27 - Prob. 9PCh. 27 - Prob. 10PCh. 27 - Prob. 11PCh. 27 - Prob. 12PCh. 27 - Prob. 13PCh. 27 - Prob. 14PCh. 27 - Prob. 15PCh. 27 - Prob. 16PCh. 27 - Prob. 17PCh. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Prob. 20PCh. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - Prob. 23PCh. 27 - Prob. 24PCh. 27 - Prob. 25PCh. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - Prob. 28PCh. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - Prob. 33PCh. 27 - Prob. 34PCh. 27 - Prob. 35PCh. 27 - Prob. 36PCh. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - Prob. 40PCh. 27 - Prob. 41APCh. 27 - Prob. 42APCh. 27 - Prob. 43APCh. 27 - Prob. 44APCh. 27 - Prob. 45APCh. 27 - Prob. 46APCh. 27 - Prob. 47APCh. 27 - Prob. 48APCh. 27 - Prob. 49APCh. 27 - Prob. 50APCh. 27 - Prob. 51APCh. 27 - Prob. 52AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A neutron of mass 1.675 × 10-27 kg has a de Broglie wavelength of 7.8x10-12 m. What is the kinetic energy (in eV) of this non-relativistic neutron? Please give your answer with two decimal places. 1 eV = 1.60 × 10-19 J, h = 6.626 × 10-34 J ∙ s.arrow_forwardThe photoelectric equation for the kinetic energy of a photoelectron is, following Einstein, E < hf – W, where h is Planck's constant, f is the frequency of the light, and W is the work-function. Sodium has W = 3.2×10-19 J. When sodium is illuminated by monochromatic light of a particular frequency, electrons are emitted with speeds up to 8 x 105 ms-1. a) Calculate the wavelength of the light. b) Calculate the stopping potential.arrow_forwardAn electron has kinetic energy E = 295KeV which is equal to the energy of a photon. Let λ1 be the de-Broglie wavelength of the electron and λ2 be the wavelength of the photon. What would be the ratio of λ1/λ2?arrow_forward
- A) Calculate the de Broglie wavelength of a neutron (mn = 1.67493×10-27 kg) moving at one six hundredth of the speed of light (c/600). (Enter at least 4 significant figures.) B) Calculate the velocity of an electron (me = 9.10939×10-31 kg) having a de Broglie wavelength of 230.1 pm.arrow_forwardThe photoelectric equation for the kinetic energy of a photoelectron is, following Einstein, E ≤hf − W, where h is Planck’s constant, f is the frequency of the light, and W is the work-function.Sodium has W = 3.2×10−19 J. When sodium is illuminated by monochromatic light of a particularfrequency, electrons are emitted with speeds up to 8 × 105 m s−1.a) Calculate the wavelength of the light.b) Calculate the stopping potential.arrow_forwardWhat is the velocity of an electron emitted by lithium (work function = 2.90 e.v.) if light with a frequency of 4.77x1015 s-1 is absorbed?arrow_forward
- An electron has a de Broglie wavelength λ = 4.5×10−10 m .h=6.626×10−34 J⋅s, e=1.602×10−19 C, me=9.109×10−31 kg. What is its momentum?arrow_forwardThe photoelectric equation for the kinetic energy of a photoelectron is, following Einstein, E < hf – W, where h is Planck's constant, f is the frequency of the light, and W is the work-function. Sodium has W = 3.2 x 10-19 J. When sodium is illuminated by monochromatic light of a particular frequency, electrons are emitted with speeds up to 8 x 105 m s-1. a) Calculate the wavelength of the light. b) Calculate the stopping potential.arrow_forwardAn electron has a kinetic energy of 4.1 × 10–¹³ J. 46. What is the electron's speed? (a) 0.960c (b) 0.968c (c) 0.972c (d) 0.980c (e) 0.986c 47. What is the de Broglie wavelength of the electron described? (a) 4.09 × 10-13 m (b) 4.94 × 10-13m (c) 5.42 × 10-13 m (d) 6.25 × 10-13 m (e) 7.81 x 10-13marrow_forward
- Calculate the velocity of a proton having de-Broglie wavelength of 0.2 nm. (A) 5.985 x 10ʻ m/s (B) 1.985 x 10' m/s (C) 5.985 x 10“ m/s (D) 1.985 x 10* m/sarrow_forwardwhat is the speed of an electron that has the same momentum as a photon with a wavelength in vacuum of 488 nm? The mass of an electron is 9.11 × 10^–31 kg.arrow_forwardMonochromatic light of frequency 6.0 ×1014 Hz is produced by a laser. The power emitted is 2.0 ×10-3 W. (a) What is the energy of a photon in the light beam? (b) How many photons per second, on an average, are emitted by the source?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning