College Physics:
11th Edition
ISBN: 9781305965515
Author: SERWAY, Raymond A.
Publisher: Brooks/Cole Pub Co
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
Chapter 27.5, Problem 27.2QQ
To determine
What happens to the frequency of the scattered photon relative to the incident photon when an x-ray is scattered by an electron.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The energy in eV of a photon, if the
frequency of the radiation is 7 × 10¹ Hz is
4.0 eV
3.9 eV
(a)
(c)
(b) 2.9 eV
(d)
1.9 eV
A 2.0-kg object falls from a height of 5.0 m to the ground. If all the gravitational potential energy of this mass could be converted to visible light of wavelength 5.0 × 10−7 m, how many photons would be produced?
A 2.0 - kg object falls from a height of 5.0 m to the ground. If the change in the object’s kinetic energy could be converted to visible light of wavelength 5.0 x 10-7 m, how many photons would be produced?
Chapter 27 Solutions
College Physics:
Ch. 27.5 - Prob. 27.1QQCh. 27.5 - Prob. 27.2QQCh. 27.5 - Prob. 27.3QQCh. 27.6 - Prob. 27.4QQCh. 27.6 - Prob. 27.5QQCh. 27 - Prob. 1CQCh. 27 - Prob. 2CQCh. 27 - Prob. 3CQCh. 27 - Prob. 4CQCh. 27 - Prob. 5CQ
Ch. 27 - Prob. 6CQCh. 27 - Prob. 7CQCh. 27 - Prob. 8CQCh. 27 - Prob. 9CQCh. 27 - Prob. 10CQCh. 27 - Prob. 11CQCh. 27 - Prob. 12CQCh. 27 - Prob. 13CQCh. 27 - Prob. 14CQCh. 27 - Prob. 15CQCh. 27 - Prob. 16CQCh. 27 - Prob. 1PCh. 27 - Prob. 2PCh. 27 - Prob. 3PCh. 27 - Prob. 4PCh. 27 - Prob. 5PCh. 27 - Prob. 6PCh. 27 - Prob. 7PCh. 27 - Prob. 8PCh. 27 - Prob. 9PCh. 27 - Prob. 10PCh. 27 - Prob. 11PCh. 27 - Prob. 12PCh. 27 - Prob. 13PCh. 27 - Prob. 14PCh. 27 - Prob. 15PCh. 27 - Prob. 16PCh. 27 - Prob. 17PCh. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Prob. 20PCh. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - Prob. 23PCh. 27 - Prob. 24PCh. 27 - Prob. 25PCh. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - Prob. 28PCh. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - Prob. 33PCh. 27 - Prob. 34PCh. 27 - Prob. 35PCh. 27 - Prob. 36PCh. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - Prob. 40PCh. 27 - Prob. 41APCh. 27 - Prob. 42APCh. 27 - Prob. 43APCh. 27 - Prob. 44APCh. 27 - Prob. 45APCh. 27 - Prob. 46APCh. 27 - Prob. 47APCh. 27 - Prob. 48APCh. 27 - Prob. 49APCh. 27 - Prob. 50APCh. 27 - Prob. 51APCh. 27 - Prob. 52AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- X-ray photons of wavelength 0.0248 nm are incident on a target and the Compton-scattered photons are observed at 80.0° above the photons' incident line of travel. [Use relativistic units for this problem!](a) What is the momentum of the incident photons? eV/c(b) What is the momentum (magnitude and angle) of the scattered electrons? eV/c°magnitude=61802.35 angel=?arrow_forwardAfter a 0.8 mm x-ray photon scatters from a free electron, the electron recoils at 1.4 x 106 m/s. (a) What is the Compton shift in the photon's wavelength? (b) Through what angle is the photon scattered?arrow_forwardA hydrogen atom transitions from the n = 8 excited state to the n = 4 excited state, emitting a photon. (a) What is the energy, in electron volts, of the photon emitted by the hydrogen atom? eV(b) What is the wavelength of the photon emitted by the hydrogen atom? m(c) What is the frequency of the photon emitted by the hydrogen atom? Hzarrow_forward
- X-ray photons of wavelength 0.0248 nm are incident on a target and the Compton-scattered photons are observed at 80.0° above the photons' incident line of travel. [Use relativistic units for this problem!] (a) What is the wavelength of the scattered photons? nm (b) What is the momentum of the incident photons? eV/c What is the momentum of the scattered photons? eV/c (c) What is the kinetic energy of the scattered electrons? eV (d) What is the momentum (magnitude and angle) of the scattered electrons? eV/carrow_forwardX-rays strike a stationary electron. When the x-ray photon scatters at an angle of 15 degrees it has an energy of 12.39 keV. What is the energy of the incident photon?arrow_forwardA hydrogen atom on the surface of the sun radiates a photon with wavelength 1800 nm. The sun has a radius, Tsun = 6.96 × 108 m, and a mass, Msun = 1.99 × 10³⁰ kg. (a) Calculate the change in wavelength when the photon is observed a long way - effectively at an infinite distance from the sun (or any other massive object). (b) How fast and in what direction would the observer have to move in order to cancel this change in wavelength?arrow_forward
- energy flux of sunlight reaching the surface of the earth is 1.388 x 10^3 W/m^2. How many photons (nearly) per square meter are incident on the Earth per second? Assume that the photons in the sunlight have an average wavelength of 550 nm.arrow_forwardA helium‑neon laser produces light of wavelength 632.8 nm. The laser beam carries a power of 0.75 mW and strikes a target perpendicular to the beam. How many photons per second, n, strike the target? n = ? photons/s At what rate R does the laser beam deliver linear momentum to the target if the photons are all absorbed by the target? R = ? kg·m/s2arrow_forwardA 100W sodium lamp radiates energy uniformly in all directions. The lamp is located at the centre of a large sphere that absorbs all the sodium light which is incident on it. The wavelength of the sodium light is 589 nm. (a) What is the energy per photon associated with the sodium light? (b) At what rate are the photons delivered to the sphere?arrow_forward
- The energy flux of sunlight reaching the surface of the earth is 1.388 x 10³ w/m?. How many photons (nearly) per square metre are incident on the Earth per second? Assume that the photons in the sunlight have an average wavelength of 550 nm.arrow_forward1arrow_forwardHow fast must an electron be moving if all its kinetic energy is lost to a single x-ray photon (a) at the high end of the x-ray electromagnetic spectrum with a wavelength of 1.00 × 10−8 m and (b) at the low end of the x-ray electromagnetic spectrum with a wavelength of 1.00 × 10−13 m?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning