College Physics:
11th Edition
ISBN: 9781305965515
Author: SERWAY, Raymond A.
Publisher: Brooks/Cole Pub Co
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 27, Problem 5P
To determine
The peak wavelength for the Earth.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Earth's average surface temperature is about 287 K. Assuming
Earth radiates as a blackbody, calculate Amax for the Earth.
The radius of our sun is r = 6.96 × 108 m and its total power is 3.85 × 1026 W. The area of a sphere is A = 4πr2.a) Assuming that the surface of the Sun emits like a black body, calculate its surface temperatureb) Using the result of part (a), find λmax for the sun.
Problem-1:
An asteroid is hurtling toward earth at 150,000“. The temperature of the asteroid is about 100 K, meaning that its peak emission
is 2 = 29 µm. The speed of light is c =
3E[8].
a) What is the wavelength of light that we receive from the asteroid? (Answer: 2.89855E[-05] m)
Chapter 27 Solutions
College Physics:
Ch. 27.5 - Prob. 27.1QQCh. 27.5 - Prob. 27.2QQCh. 27.5 - Prob. 27.3QQCh. 27.6 - Prob. 27.4QQCh. 27.6 - Prob. 27.5QQCh. 27 - Prob. 1CQCh. 27 - Prob. 2CQCh. 27 - Prob. 3CQCh. 27 - Prob. 4CQCh. 27 - Prob. 5CQ
Ch. 27 - Prob. 6CQCh. 27 - Prob. 7CQCh. 27 - Prob. 8CQCh. 27 - Prob. 9CQCh. 27 - Prob. 10CQCh. 27 - Prob. 11CQCh. 27 - Prob. 12CQCh. 27 - Prob. 13CQCh. 27 - Prob. 14CQCh. 27 - Prob. 15CQCh. 27 - Prob. 16CQCh. 27 - Prob. 1PCh. 27 - Prob. 2PCh. 27 - Prob. 3PCh. 27 - Prob. 4PCh. 27 - Prob. 5PCh. 27 - Prob. 6PCh. 27 - Prob. 7PCh. 27 - Prob. 8PCh. 27 - Prob. 9PCh. 27 - Prob. 10PCh. 27 - Prob. 11PCh. 27 - Prob. 12PCh. 27 - Prob. 13PCh. 27 - Prob. 14PCh. 27 - Prob. 15PCh. 27 - Prob. 16PCh. 27 - Prob. 17PCh. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Prob. 20PCh. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - Prob. 23PCh. 27 - Prob. 24PCh. 27 - Prob. 25PCh. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - Prob. 28PCh. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - Prob. 33PCh. 27 - Prob. 34PCh. 27 - Prob. 35PCh. 27 - Prob. 36PCh. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - Prob. 40PCh. 27 - Prob. 41APCh. 27 - Prob. 42APCh. 27 - Prob. 43APCh. 27 - Prob. 44APCh. 27 - Prob. 45APCh. 27 - Prob. 46APCh. 27 - Prob. 47APCh. 27 - Prob. 48APCh. 27 - Prob. 49APCh. 27 - Prob. 50APCh. 27 - Prob. 51APCh. 27 - Prob. 52AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The thermal (black-body) radiation from a star peaks at a wavelength of 300 nm. What is the surface temperature of the star in K?arrow_forwardQuestion A7 The intensity of the emitted radiation by a star is at a maximum at a wavelength of 78.9 nm. a) Calculate the surface temperature of the star. b) Calculate the ratio of the intensity radiated at 65.0 nm to the maximum intensity. Assume that the star radiates like an ideal blackbody.arrow_forwardA blackbody (a hollow sphere whose inside is black) emits radiation when it is heated. The emittance (Mλ, W/m3), which is the power per unit area per wavelength, at a given temperature (T, K) and wavelength (λ, m) is given by the Planck distribution, where h is Planck's constant, c is the speed of light, and k is Boltzmann's constant. Determine the temperature in degrees Celsius at which a blackbody will emit light of wavelength 3.57 μm with an Mλ of 5.31×1010 W/m3. The power per unit area emitted can be determined by integrating Mλ between two wavelengths, λ1 and λ2. However, for narrow wavelength ranges (Δλ), the power emitted can be simply calculated as the product of Mλ and Δλ. power emitted=MλΔλ Using the conditions from the first part of the question, determine the power emitted per square meter (W/m2) between the wavelengths 3.56 μm and 3.58 μm.arrow_forward
- What is the surface temperature of Betelgeuse, a red giant star in the constellation of Orion, which radiates with a peak wavelength of about 970 nm? (b) Rigel, a bluish - white star in Orion, radiates with a peak wavelength of 145 nm. Find the temperature of Rigel’s surface.arrow_forwardThe spectrum of light from a star is, to a good approximation, a blackbody spectrum. The red supergiant star Betelgeuse has Amax = 760 nm. (Note that this is actually in the infrared portion of the spectrum.) When light from Betelgeuse reaches the earth, the measured intensity at the earth is 2.9 X 10-8 W/m². Betelgeuse is located 490 light years from earth. (a) Find the temperature of Betelgeuse. (b) Find the intensity of light emitted by Betelgeuse. (Hint: Remember that this and the measured intensity at the earth are related by an inverse square law.) (c) Find the radius of Betelgeuse. (Assume it is spherical.)arrow_forwardTwo stars, both of which behave like ideal blackbodies, radiate the same total energy per second. The cooler one has a surface temperature T and 4.0 times the diameter of the hotter star. What is the temperature of the hotter star in terms of T?arrow_forward
- Suppose a star with radius 8.69 x 10° m has a peak wavelength of 684 nm in the spectrum of its emitted radiation. (a) Find the energy of a photon with this wavelength. 0.029e-17 J/photon (b) What is the surface temperature of the star? 4274.3 X K (c) At what rate is energy emitted from the star in the form of radiation? Assume the star is a blackbody (e = 1). 1.9934e17 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. W (d) Using the answer to part (a), estimate the rate at which photons leave the surface of the star. X photons/sarrow_forward1arrow_forwardPlank's spectral energy density distribution is given as a function of frequency (v) and Temperature (T), 8Th 3 u (v) = C3 hv ект - 1] c is the speed of light constant, h is the Plank constant, and k is the Boltzmann constant. v at umax determines the color of the radiating blackbody. Find v at umax in the form of a multiple of T.arrow_forward
- Consider the following. (a) Model the tungsten filament of a lightbulb as a blackbody at temperature 3320 K. Determine the wavelength of light it emits most strongly. Your response differs from the correct answer by more than 10%. Double check your calculations. nmarrow_forward) a) What temperature is required for a black body spectrum to peak in the X-ray band? (Assume that E = 1 keV). What is the frequency and wavelength of a 1 keV photon? b) What is one example of an astrophysical phenomenon that emits black body radiation that peaks near 1 keV? c) What temperature is required for a black body spectrum to peak in the gamma-ray band with E = 1 GeV? What is the frequency and wavelength of a 1 GeV photon? d) What is one example of an astrophysical phenomenon that emits black body radiation that peaks at 1 GeV?arrow_forwardAnswer the following. (a) What is the surface temperature of Betelgeuse, a red giant star in the constellation of Orion, which radiates with a peak wavelength of about 970 nm? K(b) Rigel, a bluish-white star in Orion, radiates with a peak wavelength of 145 nm. Find the temperature of Rigel's surface. Karrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning