College Physics:
11th Edition
ISBN: 9781305965515
Author: SERWAY, Raymond A.
Publisher: Brooks/Cole Pub Co
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 27, Problem 51AP
(a)
To determine
The speed of the electron if all its kinetic energy is lost to a single x-ray photon at the high end of the x-ray electromagnetic spectrum.
(b)
To determine
The speed of the electron if all its kinetic energy is lost to a single x-ray photon at the low end of the x-ray electromagnetic spectrum.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How fast must an electron be moving if all its kinetic energy is lost to a single x-ray photon (a) at the high end of the x-ray electromagnetic spectrum with a wavelength of 1.00 × 10−8 m and (b) at the low end of the x-ray electromagnetic spectrum with a wavelength of 1.00 × 10−13 m?
The energy in eV of a photon, if the
frequency of the radiation is 7 × 10¹ Hz is
4.0 eV
3.9 eV
(a)
(c)
(b) 2.9 eV
(d)
1.9 eV
(a) A certain X-ray photon has a wavelength of 18 nm. Calculate the frequency (υ) of this type of radiation. The speed of light, c = 2.998 x 108 m/s
(b) Do you expect the frequency of photon of blue color light to be greater than, less than, or the same as the frequency of this X-ray photon? Explain your reasoning.
Chapter 27 Solutions
College Physics:
Ch. 27.5 - Prob. 27.1QQCh. 27.5 - Prob. 27.2QQCh. 27.5 - Prob. 27.3QQCh. 27.6 - Prob. 27.4QQCh. 27.6 - Prob. 27.5QQCh. 27 - Prob. 1CQCh. 27 - Prob. 2CQCh. 27 - Prob. 3CQCh. 27 - Prob. 4CQCh. 27 - Prob. 5CQ
Ch. 27 - Prob. 6CQCh. 27 - Prob. 7CQCh. 27 - Prob. 8CQCh. 27 - Prob. 9CQCh. 27 - Prob. 10CQCh. 27 - Prob. 11CQCh. 27 - Prob. 12CQCh. 27 - Prob. 13CQCh. 27 - Prob. 14CQCh. 27 - Prob. 15CQCh. 27 - Prob. 16CQCh. 27 - Prob. 1PCh. 27 - Prob. 2PCh. 27 - Prob. 3PCh. 27 - Prob. 4PCh. 27 - Prob. 5PCh. 27 - Prob. 6PCh. 27 - Prob. 7PCh. 27 - Prob. 8PCh. 27 - Prob. 9PCh. 27 - Prob. 10PCh. 27 - Prob. 11PCh. 27 - Prob. 12PCh. 27 - Prob. 13PCh. 27 - Prob. 14PCh. 27 - Prob. 15PCh. 27 - Prob. 16PCh. 27 - Prob. 17PCh. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Prob. 20PCh. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - Prob. 23PCh. 27 - Prob. 24PCh. 27 - Prob. 25PCh. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - Prob. 28PCh. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - Prob. 33PCh. 27 - Prob. 34PCh. 27 - Prob. 35PCh. 27 - Prob. 36PCh. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - Prob. 40PCh. 27 - Prob. 41APCh. 27 - Prob. 42APCh. 27 - Prob. 43APCh. 27 - Prob. 44APCh. 27 - Prob. 45APCh. 27 - Prob. 46APCh. 27 - Prob. 47APCh. 27 - Prob. 48APCh. 27 - Prob. 49APCh. 27 - Prob. 50APCh. 27 - Prob. 51APCh. 27 - Prob. 52AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Roughly what frequency and what kind of light would you need to be able to separate an electron from a proton? Of = 1018 H z, x ray f = 1014 H z, visible light Of = 102° H z, y ray O f = 10° H z, microwavearrow_forwardWhen light with a wavelength of 208 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic energy of 3.59 × 10-19 J. Determine the wavelength (in nm) of light that should be used to double the maximum kinetic energy of the electrons ejected from this surface.arrow_forwardThe photoelectric equation for the kinetic energy of a photoelectron is, following Einstein, E < hf – W, where h is Planck's constant, f is the frequency of the light, and W is the work-function. Sodium has W = 3.2 x 10-19 J. When sodium is illuminated by monochromatic light of a particular frequency, electrons are emitted with speeds up to 8 x 105 m s-1. a) Calculate the wavelength of the light. b) Calculate the stopping potential.arrow_forward
- The photoelectric equation for the kinetic energy of a photoelectron is, following Einstein, E < hf – W, where h is Planck's constant, f is the frequency of the light, and W is the work-function. Sodium has W = 3.2×10-19 J. When sodium is illuminated by monochromatic light of a particular frequency, electrons are emitted with speeds up to 8 x 105 ms-1. a) Calculate the wavelength of the light. b) Calculate the stopping potential.arrow_forwardA 2.0-kg object falls from a height of 5.0 m to the ground. If all the gravitational potential energy of this mass could be converted to visible light of wavelength 5.0 × 10−7 m, how many photons would be produced?arrow_forwardThe photoelectric equation for the kinetic energy of a photoelectron is, following Einstein, E < hf – W, whereh is Planck's constant, f is the frequency of the light, and W is the work-function. Sodium has W = 3.2×10-19 J. When sodium is illuminated by monochromatic light of a particular frequency, electrons are emitted with speeds up to 8 x 105 ms-1. a) Calculate the wavelength of the light. b) Calculate the stopping potential.arrow_forward
- A hydrogen atom transitions from the n = 8 excited state to the n = 4 excited state, emitting a photon. (a) What is the energy, in electron volts, of the photon emitted by the hydrogen atom? eV(b) What is the wavelength of the photon emitted by the hydrogen atom? m(c) What is the frequency of the photon emitted by the hydrogen atom? Hzarrow_forwardA photon has momentum of magnitude 2.48 x 10-28 kg.m/s. (a) What is the kinetic energy of this photon? (b) What is the wavelength of this photon? (c) In what region of the electromagnetic spectrum does it lie?arrow_forwardWhen light with a wavelength of 219 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic energy of 3.32×10−193.32×10−19 J. Determine the wavelength of light that should be used to triple the maximum kinetic energy of the electrons ejected from this surface.arrow_forward
- A metal plate is illuminated with light of a certain frequency. Which of the following determine whether or not electrons are ejected: (a) the intensity of the light, (b) how long the plate is exposed to the light, (c) the thermal conductivity of the plate, (d) the area of the plate, (e) the material of which the plate is made?arrow_forwardThe photoelectric equation for the kinetic energy of a photoelectron is, following Einstein, E ≤hf − W, where h is Planck’s constant, f is the frequency of the light, and W is the work-function.Sodium has W = 3.2×10−19 J. When sodium is illuminated by monochromatic light of a particularfrequency, electrons are emitted with speeds up to 8 × 105 m s−1.a) Calculate the wavelength of the light.b) Calculate the stopping potential.arrow_forward(4) (a) What is the wavelength of an X-ray photon of energy 10.0 keV? (b) What is the wavelength of a gamma-ray photon of energy 1.00 MeV? (c) What is the range of energies of photons of visible light with wavelengths 350-700 nm?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning