
Numerical Analysis
3rd Edition
ISBN: 9780134696454
Author: Sauer, Tim
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2.6, Problem 10CP
To determine
To write the matrix for the given condition and arrange blocks in matlab program.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Can you answer this question and give step by step and why and how to get it. Can you write it (numerical method)
Jamal wants to save $48,000 for a down payment on a home. How much will he need to invest in an
account with 11.8% APR, compounding daily, in order to reach his goal in 10 years? Round to the
nearest dollar.
r
nt
Use the compound interest formula, A (t) = P(1 + 1)".
An account is opened with an intial deposit of $7,500 and earns 3.8% interest compounded semi-
annually. Round all answers to the nearest dollar.
a. What will the account be worth in 10 years? $
b. What if the interest were compounding monthly? $
c. What if the interest were compounded daily (assume 365 days in a year)? $
Chapter 2 Solutions
Numerical Analysis
Ch. 2.1 - Use Gaussian elimination to solve the systems:...Ch. 2.1 - Use Gaussian elimination to solve the systems:...Ch. 2.1 - Solve by back substitution: a.3x4y+5z=23y4z=15z=5...Ch. 2.1 - Solve the tableau form a.[ 34236612382-1 ] b.[...Ch. 2.1 - Use the approximate operation count 2n3/3 for...Ch. 2.1 - Assume that your computer completes a 5000...Ch. 2.1 - Assume that a given computer requires 0.002...Ch. 2.1 - If a system of 3000 equations in 3000 unknowns can...Ch. 2.1 - Put together the code fragments in this section to...Ch. 2.1 - Let H denote the nn Hubert matrix, whose (i,j)...
Ch. 2.2 - Find the LU factorization of the given matrices....Ch. 2.2 - Find the LU factorization of the given matrices....Ch. 2.2 - Solve the system by finding the LU factorization...Ch. 2.2 - Solve the system by finding the LU factorization...Ch. 2.2 - Solve the equation Ax=b, where A=[...Ch. 2.2 - Given the 10001000 matrix A, your computer can...Ch. 2.2 - Assume that your computer can solve 1000 problems...Ch. 2.2 - Assume that your computer can solve a 20002000...Ch. 2.2 - Let A be an nn matrix. Assume that your computer...Ch. 2.2 - Use the code fragments for Gaussian elimination in...Ch. 2.2 - Add two-step back substitution to your script from...Ch. 2.3 - Find the norm A of each of the following...Ch. 2.3 - Find the (infinity norm) condition number of (a)...Ch. 2.3 - Find the forward and backward errors, and the...Ch. 2.3 - Find the forward and backward errors and error...Ch. 2.3 - Find the relative forward and backward errors and...Ch. 2.3 - Find the relative forward and backward errors and...Ch. 2.3 - Find the norm H of the 55 Hilbert matrix.Ch. 2.3 - (a) Find the condition number of the coefficient...Ch. 2.3 - (a) Find the condition number (in the infinity...Ch. 2.3 - (a) Find the (infinity norm) condition number of...Ch. 2.3 - (a) Prove that the infinity norm x is a vector...Ch. 2.3 - (a) Prove that the infinity norm A is a matrix...Ch. 2.3 - Prove that the matrix infinity norm is the...Ch. 2.3 - Prove that the matrix 1-norm is the operator norm...Ch. 2.3 - For the matrices in Exercise 1, find a vector x...Ch. 2.3 - For the matrices in Exercise 1, find a vector...Ch. 2.3 - Prob. 17ECh. 2.3 - Prob. 18ECh. 2.3 - For the nn matrix with entries Aij=5/(i+2j1), set...Ch. 2.3 - Carry out Computer Problem 1 for the matrix with...Ch. 2.3 - Let A be the nn matrix with entries Aij=| ij |+1 ....Ch. 2.3 - Carry out the steps of Computer Problem 3 for the...Ch. 2.3 - For what values of n does the solution in Computer...Ch. 2.3 - Use the MATLAB program from Computer Problem 2.1.1...Ch. 2.4 - Find the PA=LU factorization (using partial...Ch. 2.4 - Find the PA=LU factorization (using partial...Ch. 2.4 - Solve the system by finding the PA=LU...Ch. 2.4 - Solve the system by finding the PA=LU...Ch. 2.4 - Write down a 55 matrix P such that multiplication...Ch. 2.4 - (a) Write down the 44 matrix P such that...Ch. 2.4 - Change four entries of the leftmost matrix to make...Ch. 2.4 - Find the PA=LU factorization of the matrix A in...Ch. 2.4 - (a) Find the PA=LU factorization of A=[...Ch. 2.4 - (a) Assume that A is an nn matrix with entries |...Ch. 2.4 - Write a MATLAB program to define the structure...Ch. 2.4 - Plot the solution from Step 1 against the correct...Ch. 2.4 - Rerun the calculation in Step 1 for n=102k, where...Ch. 2.4 - Add a sinusoidal pile to the beam. This means...Ch. 2.4 - Rerun the calculation as in Step 3 for the...Ch. 2.4 - Now remove the sinusoidal load and add a 70 kg...Ch. 2.4 - If we also fix the free end of the diving board,...Ch. 2.4 - Ideas for further exploration: If the width of the...Ch. 2.5 - Compute the first two steps of the Jacobi and the...Ch. 2.5 - Rearrange the equations to form a strictly...Ch. 2.5 - Apply two steps of SOR to the systems in Exercise...Ch. 2.5 - Apply two steps of SOR to the systems in Exercise...Ch. 2.5 - Let be an eigenvalue of an nn matrix A. (a) Prove...Ch. 2.5 - Use the Jacobi Method to solve the sparse system...Ch. 2.5 - Use the Jacobi Method to solve the sparse system...Ch. 2.5 - Rewrite Program 2.2 to carry out Gauss-Seidel...Ch. 2.5 - Rewrite Program 2.2 to carry out SOR. Use =1.1 to...Ch. 2.5 - Carry out the steps of Computer Problem 1 with...Ch. 2.5 - Prob. 6CPCh. 2.5 - Using your program from Computer Problem 3. decide...Ch. 2.6 - Show that the following matrices are symmetric...Ch. 2.6 - Show that the following symmetric matrices are not...Ch. 2.6 - Prob. 3ECh. 2.6 - Show that the Cholesky factorization procedure...Ch. 2.6 - Prob. 5ECh. 2.6 - Find the Cholesky factorization A=RTR of each...Ch. 2.6 - Prob. 7ECh. 2.6 - Solve the system of equations by finding the...Ch. 2.6 - Prob. 9ECh. 2.6 - Find all numbers d such that A=[ 122d ] is...Ch. 2.6 - Prob. 11ECh. 2.6 - Prove that a principal submatrix of a symmetric...Ch. 2.6 - Solve the problems by carrying out the Conjugate...Ch. 2.6 - Solve the problems by carrying out the Conjugate...Ch. 2.6 - Carry out the conjugate gradient iteration in the...Ch. 2.6 - Prob. 1CPCh. 2.6 - Use a MATLAB version of conjugate gradient to...Ch. 2.6 - Solve the system Hx=b by the Conjugate Gradient...Ch. 2.6 - Solve the sparse problem of (2.45) by the...Ch. 2.6 - Prob. 5CPCh. 2.6 - Let A be the nn matrix with n=1000 and entries...Ch. 2.6 - Prob. 7CPCh. 2.6 - Prob. 8CPCh. 2.6 - Prob. 9CPCh. 2.6 - Prob. 10CPCh. 2.7 - Find the jacobian of the functions a....Ch. 2.7 - Use the Taylor expansion to find the linear...Ch. 2.7 - Sketch the two curves in the uv-plane, and find...Ch. 2.7 - Apply two steps of Newtons Method to the systems...Ch. 2.7 - Apply two steps of Broyden I to the systems in...Ch. 2.7 - Prob. 6ECh. 2.7 - Prove that (2.55) satisfies (2.53) and (2.54).Ch. 2.7 - Prove that (2.58) satisfies (2.56) and (2.57).Ch. 2.7 - Implement Newtons Method with appropriate starting...Ch. 2.7 - Use Newtons Method to find the three solutions of...Ch. 2.7 - Use Newtons Method to find the two solutions of...Ch. 2.7 - Apply Newtons Method to find both solutions of the...Ch. 2.7 - Use Multivariate Newtons Method to find the two...Ch. 2.7 - Prob. 6CPCh. 2.7 - Apply Broyden I with starting guesses x0=(1,1) and...Ch. 2.7 - Apply Broyden II with starting guesses (1, 1) and...Ch. 2.7 - Prob. 9CPCh. 2.7 - Apply Broyden Ito find the intersection point in...Ch. 2.7 - Apply Broyden II to find the sets of two...Ch. 2.7 - Apply Broyden II to find the intersection point in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Kyoko has $10,000 that she wants to invest. Her bank has several accounts to choose from. Her goal is to have $15,000 by the time she finishes graduate school in 7 years. To the nearest hundredth of a percent, what should her minimum annual interest rate be in order to reach her goal assuming they compound daily? (Hint: solve the compound interest formula for the intrerest rate. Also, assume there are 365 days in a year) %arrow_forwardTest the claim that a student's pulse rate is different when taking a quiz than attending a regular class. The mean pulse rate difference is 2.7 with 10 students. Use a significance level of 0.005. Pulse rate difference(Quiz - Lecture) 2 -1 5 -8 1 20 15 -4 9 -12arrow_forwardThere are three options for investing $1150. The first earns 10% compounded annually, the second earns 10% compounded quarterly, and the third earns 10% compounded continuously. Find equations that model each investment growth and use a graphing utility to graph each model in the same viewing window over a 20-year period. Use the graph to determine which investment yields the highest return after 20 years. What are the differences in earnings among the three investment? STEP 1: The formula for compound interest is A = nt = P(1 + − − ) n², where n is the number of compoundings per year, t is the number of years, r is the interest rate, P is the principal, and A is the amount (balance) after t years. For continuous compounding, the formula reduces to A = Pert Find r and n for each model, and use these values to write A in terms of t for each case. Annual Model r=0.10 A = Y(t) = 1150 (1.10)* n = 1 Quarterly Model r = 0.10 n = 4 A = Q(t) = 1150(1.025) 4t Continuous Model r=0.10 A = C(t) =…arrow_forward
- The following ordered data list shows the data speeds for cell phones used by a telephone company at an airport: A. Calculate the Measures of Central Tendency from the ungrouped data list. B. Group the data in an appropriate frequency table. C. Calculate the Measures of Central Tendency using the table in point B. D. Are there differences in the measurements obtained in A and C? Why (give at least one justified reason)? I leave the answers to A and B to resolve the remaining two. 0.8 1.4 1.8 1.9 3.2 3.6 4.5 4.5 4.6 6.2 6.5 7.7 7.9 9.9 10.2 10.3 10.9 11.1 11.1 11.6 11.8 12.0 13.1 13.5 13.7 14.1 14.2 14.7 15.0 15.1 15.5 15.8 16.0 17.5 18.2 20.2 21.1 21.5 22.2 22.4 23.1 24.5 25.7 28.5 34.6 38.5 43.0 55.6 71.3 77.8 A. Measures of Central Tendency We are to calculate: Mean, Median, Mode The data (already ordered) is: 0.8, 1.4, 1.8, 1.9, 3.2, 3.6, 4.5, 4.5, 4.6, 6.2, 6.5, 7.7, 7.9, 9.9, 10.2, 10.3, 10.9, 11.1, 11.1, 11.6, 11.8, 12.0, 13.1, 13.5, 13.7, 14.1, 14.2, 14.7, 15.0, 15.1, 15.5,…arrow_forwardA tournament is a complete directed graph, for each pair of vertices x, y either (x, y) is an arc or (y, x) is an arc. One can think of this as a round robin tournament, where the vertices represent teams, each pair plays exactly once, with the direction of the arc indicating which team wins. (a) Prove that every tournament has a direct Hamiltonian path. That is a labeling of the teams V1, V2,..., Un so that vi beats Vi+1. That is a labeling so that team 1 beats team 2, team 2 beats team 3, etc. (b) A digraph is strongly connected if there is a directed path from any vertex to any other vertex. Equivalently, there is no partition of the teams into groups A, B so that every team in A beats every team in B. Prove that every strongly connected tournament has a directed Hamiltonian cycle. Use this to show that for any team there is an ordering as in part (a) for which the given team is first. (c) A king in a tournament is a vertex such that there is a direct path of length at most 2 to any…arrow_forwardUse a graphing utility to find the point of intersection, if any, of the graphs of the functions. Round your result to three decimal places. (Enter NONE in any unused answer blanks.) y = 100e0.01x (x, y) = y = 11,250 ×arrow_forward
- how to construct the following same table?arrow_forwardThe following is known. The complete graph K2t on an even number of vertices has a 1- factorization (equivalently, its edges can be colored with 2t - 1 colors so that the edges incident to each vertex are distinct). This implies that the complete graph K2t+1 on an odd number of vertices has a factorization into copies of tK2 + K₁ (a matching plus an isolated vertex). A group of 10 people wants to set up a 45 week tennis schedule playing doubles, each week, the players will form 5 pairs. One of the pairs will not play, the other 4 pairs will each play one doubles match, two of the pairs playing each other and the other two pairs playing each other. Set up a schedule with the following constraints: Each pair of players is a doubles team exactly 4 times; during those 4 matches they see each other player exactly once; no two doubles teams play each other more than once. (a) Find a schedule. Hint - think about breaking the 45 weeks into 9 blocks of 5 weeks. Use factorizations of complete…arrow_forward. The two person game of slither is played on a graph. Players 1 and 2 take turns, building a path in the graph. To start, Player 1 picks a vertex. Player 2 then picks an edge incident to the vertex. Then, starting with Player 1, players alternate turns, picking a vertex not already selected that is adjacent to one of the ends of the path created so far. The first player who cannot select a vertex loses. (This happens when all neighbors of the end vertices of the path are on the path.) Prove that Player 2 has a winning strategy if the graph has a perfect matching and Player 1 has a winning strategy if the graph does not have a perfect matching. In each case describe a strategy for the winning player that guarantees that they will always be able to select a vertex. The strategy will be based on using a maximum matching to decide the next choice, and will, for one of the cases involve using the fact that maximality means no augmenting paths. Warning, the game slither is often described…arrow_forward
- Let D be a directed graph, with loops allowed, for which the indegree at each vertex is at most k and the outdegree at each vertex is at most k. Prove that the arcs of D can be colored so that the arcs entering each vertex must have distinct colors and the arcs leaving each vertex have distinct colors. An arc entering a vertex may have the same color as an arc leaving it. It is probably easiest to make use of a known result about edge coloring. Think about splitting each vertex into an ‘in’ and ‘out’ part and consider what type of graph you get.arrow_forward3:56 wust.instructure.com Page 0 Chapter 5 Test Form A of 2 - ZOOM + | Find any real numbers for which each expression is undefined. 2x 4 1. x Name: Date: 1. 3.x-5 2. 2. x²+x-12 4x-24 3. Evaluate when x=-3. 3. x Simplify each rational expression. x²-3x 4. 2x-6 5. x²+3x-18 x²-9 6. Write an equivalent rational expression with the given denominator. 2x-3 x²+2x+1(x+1)(x+2) Perform the indicated operation and simplify if possible. x²-16 x-3 7. 3x-9 x²+2x-8 x²+9x+20 5x+25 8. 4.x 2x² 9. x-5 x-5 3 5 10. 4x-3 8x-6 2 3 11. x-4 x+4 x 12. x-2x-8 x²-4 ← -> Copyright ©2020 Pearson Education, Inc. + 5 4. 5. 6. 7. 8. 9. 10. 11. 12. T-97arrow_forwardplease work out more details give the solution.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning

College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning

Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage


Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Vector Spaces | Definition & Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=72GtkP6nP_A;License: Standard YouTube License, CC-BY
Understanding Vector Spaces; Author: Professor Dave Explains;https://www.youtube.com/watch?v=EP2ghkO0lSk;License: Standard YouTube License, CC-BY