
Numerical Analysis
3rd Edition
ISBN: 9780134696454
Author: Sauer, Tim
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2.5, Problem 4E
Apply two steps of SOR to the systems in Exercise 2 after rearranging. Use starting
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
The accompanying data shows the fossil fuels production, fossil fuels consumption, and total energy consumption in quadrillions of BTUs of a certain region for the years 1986 to 2015. Complete parts a and b.
Year Fossil Fuels Production Fossil Fuels Consumption Total Energy Consumption1949 28.748 29.002 31.9821950 32.563 31.632 34.6161951 35.792 34.008 36.9741952 34.977 33.800 36.7481953 35.349 34.826 37.6641954 33.764 33.877 36.6391955 37.364 37.410 40.2081956 39.771 38.888 41.7541957 40.133 38.926 41.7871958 37.216 38.717 41.6451959 39.045 40.550 43.4661960 39.869 42.137 45.0861961 40.307 42.758 45.7381962 41.732 44.681 47.8261963 44.037 46.509 49.6441964 45.789 48.543 51.8151965 47.235 50.577 54.0151966 50.035 53.514 57.0141967 52.597 55.127 58.9051968 54.306 58.502 62.4151969 56.286…
The accompanying data shows the fossil fuels production, fossil fuels consumption, and total energy consumption in quadrillions of BTUs of a certain region for the years 1986 to 2015. Complete parts a and b.
Develop line charts for each variable and identify the characteristics of the time series (that is, random, stationary, trend, seasonal, or cyclical).
What is the line chart for the variable Fossil Fuels Production?
The accompanying data shows the fossil fuels production, fossil fuels consumption, and total energy consumption in quadrillions of BTUs of a certain region for the years 1986 to 2015. Complete parts a and b.
Year Fossil Fuels Production Fossil Fuels Consumption Total Energy Consumption1949 28.748 29.002 31.9821950 32.563 31.632 34.6161951 35.792 34.008 36.9741952 34.977 33.800 36.7481953 35.349 34.826 37.6641954 33.764 33.877 36.6391955 37.364 37.410 40.2081956 39.771 38.888 41.7541957 40.133 38.926 41.7871958 37.216 38.717 41.6451959 39.045 40.550 43.4661960 39.869 42.137 45.0861961 40.307 42.758 45.7381962 41.732 44.681 47.8261963 44.037 46.509 49.6441964 45.789 48.543 51.8151965 47.235 50.577 54.0151966 50.035 53.514 57.0141967 52.597 55.127 58.9051968 54.306 58.502 62.4151969 56.286…
Chapter 2 Solutions
Numerical Analysis
Ch. 2.1 - Use Gaussian elimination to solve the systems:...Ch. 2.1 - Use Gaussian elimination to solve the systems:...Ch. 2.1 - Solve by back substitution: a.3x4y+5z=23y4z=15z=5...Ch. 2.1 - Solve the tableau form a.[ 34236612382-1 ] b.[...Ch. 2.1 - Use the approximate operation count 2n3/3 for...Ch. 2.1 - Assume that your computer completes a 5000...Ch. 2.1 - Assume that a given computer requires 0.002...Ch. 2.1 - If a system of 3000 equations in 3000 unknowns can...Ch. 2.1 - Put together the code fragments in this section to...Ch. 2.1 - Let H denote the nn Hubert matrix, whose (i,j)...
Ch. 2.2 - Find the LU factorization of the given matrices....Ch. 2.2 - Find the LU factorization of the given matrices....Ch. 2.2 - Solve the system by finding the LU factorization...Ch. 2.2 - Solve the system by finding the LU factorization...Ch. 2.2 - Solve the equation Ax=b, where A=[...Ch. 2.2 - Given the 10001000 matrix A, your computer can...Ch. 2.2 - Assume that your computer can solve 1000 problems...Ch. 2.2 - Assume that your computer can solve a 20002000...Ch. 2.2 - Let A be an nn matrix. Assume that your computer...Ch. 2.2 - Use the code fragments for Gaussian elimination in...Ch. 2.2 - Add two-step back substitution to your script from...Ch. 2.3 - Find the norm A of each of the following...Ch. 2.3 - Find the (infinity norm) condition number of (a)...Ch. 2.3 - Find the forward and backward errors, and the...Ch. 2.3 - Find the forward and backward errors and error...Ch. 2.3 - Find the relative forward and backward errors and...Ch. 2.3 - Find the relative forward and backward errors and...Ch. 2.3 - Find the norm H of the 55 Hilbert matrix.Ch. 2.3 - (a) Find the condition number of the coefficient...Ch. 2.3 - (a) Find the condition number (in the infinity...Ch. 2.3 - (a) Find the (infinity norm) condition number of...Ch. 2.3 - (a) Prove that the infinity norm x is a vector...Ch. 2.3 - (a) Prove that the infinity norm A is a matrix...Ch. 2.3 - Prove that the matrix infinity norm is the...Ch. 2.3 - Prove that the matrix 1-norm is the operator norm...Ch. 2.3 - For the matrices in Exercise 1, find a vector x...Ch. 2.3 - For the matrices in Exercise 1, find a vector...Ch. 2.3 - Prob. 17ECh. 2.3 - Prob. 18ECh. 2.3 - For the nn matrix with entries Aij=5/(i+2j1), set...Ch. 2.3 - Carry out Computer Problem 1 for the matrix with...Ch. 2.3 - Let A be the nn matrix with entries Aij=| ij |+1 ....Ch. 2.3 - Carry out the steps of Computer Problem 3 for the...Ch. 2.3 - For what values of n does the solution in Computer...Ch. 2.3 - Use the MATLAB program from Computer Problem 2.1.1...Ch. 2.4 - Find the PA=LU factorization (using partial...Ch. 2.4 - Find the PA=LU factorization (using partial...Ch. 2.4 - Solve the system by finding the PA=LU...Ch. 2.4 - Solve the system by finding the PA=LU...Ch. 2.4 - Write down a 55 matrix P such that multiplication...Ch. 2.4 - (a) Write down the 44 matrix P such that...Ch. 2.4 - Change four entries of the leftmost matrix to make...Ch. 2.4 - Find the PA=LU factorization of the matrix A in...Ch. 2.4 - (a) Find the PA=LU factorization of A=[...Ch. 2.4 - (a) Assume that A is an nn matrix with entries |...Ch. 2.4 - Write a MATLAB program to define the structure...Ch. 2.4 - Plot the solution from Step 1 against the correct...Ch. 2.4 - Rerun the calculation in Step 1 for n=102k, where...Ch. 2.4 - Add a sinusoidal pile to the beam. This means...Ch. 2.4 - Rerun the calculation as in Step 3 for the...Ch. 2.4 - Now remove the sinusoidal load and add a 70 kg...Ch. 2.4 - If we also fix the free end of the diving board,...Ch. 2.4 - Ideas for further exploration: If the width of the...Ch. 2.5 - Compute the first two steps of the Jacobi and the...Ch. 2.5 - Rearrange the equations to form a strictly...Ch. 2.5 - Apply two steps of SOR to the systems in Exercise...Ch. 2.5 - Apply two steps of SOR to the systems in Exercise...Ch. 2.5 - Let be an eigenvalue of an nn matrix A. (a) Prove...Ch. 2.5 - Use the Jacobi Method to solve the sparse system...Ch. 2.5 - Use the Jacobi Method to solve the sparse system...Ch. 2.5 - Rewrite Program 2.2 to carry out Gauss-Seidel...Ch. 2.5 - Rewrite Program 2.2 to carry out SOR. Use =1.1 to...Ch. 2.5 - Carry out the steps of Computer Problem 1 with...Ch. 2.5 - Prob. 6CPCh. 2.5 - Using your program from Computer Problem 3. decide...Ch. 2.6 - Show that the following matrices are symmetric...Ch. 2.6 - Show that the following symmetric matrices are not...Ch. 2.6 - Prob. 3ECh. 2.6 - Show that the Cholesky factorization procedure...Ch. 2.6 - Prob. 5ECh. 2.6 - Find the Cholesky factorization A=RTR of each...Ch. 2.6 - Prob. 7ECh. 2.6 - Solve the system of equations by finding the...Ch. 2.6 - Prob. 9ECh. 2.6 - Find all numbers d such that A=[ 122d ] is...Ch. 2.6 - Prob. 11ECh. 2.6 - Prove that a principal submatrix of a symmetric...Ch. 2.6 - Solve the problems by carrying out the Conjugate...Ch. 2.6 - Solve the problems by carrying out the Conjugate...Ch. 2.6 - Carry out the conjugate gradient iteration in the...Ch. 2.6 - Prob. 1CPCh. 2.6 - Use a MATLAB version of conjugate gradient to...Ch. 2.6 - Solve the system Hx=b by the Conjugate Gradient...Ch. 2.6 - Solve the sparse problem of (2.45) by the...Ch. 2.6 - Prob. 5CPCh. 2.6 - Let A be the nn matrix with n=1000 and entries...Ch. 2.6 - Prob. 7CPCh. 2.6 - Prob. 8CPCh. 2.6 - Prob. 9CPCh. 2.6 - Prob. 10CPCh. 2.7 - Find the jacobian of the functions a....Ch. 2.7 - Use the Taylor expansion to find the linear...Ch. 2.7 - Sketch the two curves in the uv-plane, and find...Ch. 2.7 - Apply two steps of Newtons Method to the systems...Ch. 2.7 - Apply two steps of Broyden I to the systems in...Ch. 2.7 - Prob. 6ECh. 2.7 - Prove that (2.55) satisfies (2.53) and (2.54).Ch. 2.7 - Prove that (2.58) satisfies (2.56) and (2.57).Ch. 2.7 - Implement Newtons Method with appropriate starting...Ch. 2.7 - Use Newtons Method to find the three solutions of...Ch. 2.7 - Use Newtons Method to find the two solutions of...Ch. 2.7 - Apply Newtons Method to find both solutions of the...Ch. 2.7 - Use Multivariate Newtons Method to find the two...Ch. 2.7 - Prob. 6CPCh. 2.7 - Apply Broyden I with starting guesses x0=(1,1) and...Ch. 2.7 - Apply Broyden II with starting guesses (1, 1) and...Ch. 2.7 - Prob. 9CPCh. 2.7 - Apply Broyden Ito find the intersection point in...Ch. 2.7 - Apply Broyden II to find the sets of two...Ch. 2.7 - Apply Broyden II to find the intersection point in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- For each of the time series, construct a line chart of the data and identify the characteristics of the time series (that is, random, stationary, trend, seasonal, or cyclical). Month PercentApr 1972 4.97May 1972 5.00Jun 1972 5.04Jul 1972 5.25Aug 1972 5.27Sep 1972 5.50Oct 1972 5.73Nov 1972 5.75Dec 1972 5.79Jan 1973 6.00Feb 1973 6.02Mar 1973 6.30Apr 1973 6.61May 1973 7.01Jun 1973 7.49Jul 1973 8.30Aug 1973 9.23Sep 1973 9.86Oct 1973 9.94Nov 1973 9.75Dec 1973 9.75Jan 1974 9.73Feb 1974 9.21Mar 1974 8.85Apr 1974 10.02May 1974 11.25Jun 1974 11.54Jul 1974 11.97Aug 1974 12.00Sep 1974 12.00Oct 1974 11.68Nov 1974 10.83Dec 1974 10.50Jan 1975 10.05Feb 1975 8.96Mar 1975 7.93Apr 1975 7.50May 1975 7.40Jun 1975 7.07Jul 1975 7.15Aug 1975 7.66Sep 1975 7.88Oct 1975 7.96Nov 1975 7.53Dec 1975 7.26Jan 1976 7.00Feb 1976 6.75Mar 1976 6.75Apr 1976 6.75May 1976…arrow_forwardUsing FDF, BDF, and CDF, find the first derivative; 1. The distance x of a runner from a fixed point is measured (in meters) at an interval of half a second. The data obtained is: t 0 x 0 0.5 3.65 1.0 1.5 2.0 6.80 9.90 12.15 Use CDF to approximate the runner's velocity at times t = 0.5s and t = 1.5s 2. Using FDF, BDF, and CDF, find the first derivative of f(x)=x Inx for an input of 2 assuming a step size of 1. Calculate using Analytical Solution and Absolute Relative Error: = True Value - Approximate Value| x100 True Value 3. Given the data below where f(x) sin (3x), estimate f(1.5) using Langrage Interpolation. x 1 1.3 1.6 1.9 2.2 f(x) 0.14 -0.69 -0.99 -0.55 0.31 4. The vertical distance covered by a rocket from t=8 to t=30 seconds is given by: 30 x = Loo (2000ln 140000 140000 - 2100 9.8t) dt Using the Trapezoidal Rule, n=2, find the distance covered. 5. Use Simpson's 1/3 and 3/8 Rule to approximate for sin x dx. Compare the results for n=4 and n=8arrow_forwardCan you check if my step is correct?arrow_forward
- I need help explaining on this example on how can I define the Time-Domain Function, Apply the Laplace Transformation Formula, and Simplify to Find the Frequency-Domain Expression. I need to understand on finding Y(s)arrow_forward1. A bicyclist is riding their bike along the Chicago Lakefront Trail. The velocity (in feet per second) of the bicyclist is recorded below. Use (a) Simpson's Rule, and (b) the Trapezoidal Rule to estimate the total distance the bicyclist traveled during the 8-second period. t 0 2 4 6 8 V 10 15 12 10 16 2. Find the midpoint rule approximation for (a) n = 4 +5 x²dx using n subintervals. 1° 2 (b) n = 8 36 32 28 36 32 28 24 24 20 20 16 16 12 8- 4 1 2 3 4 5 6 12 8 4 1 2 3 4 5 6arrow_forward1. A Blue Whale's resting heart rate has period that happens to be approximately equal to 2π. A typical ECG of a whale's heartbeat over one period may be approximated by the function, f(x) = 0.005x4 2 0.005x³-0.364x² + 1.27x on the interval [0, 27]. Find an nth-order Fourier approximation to the Blue Whale's heartbeat, where n ≥ 3 is different from that used in any other posts on this topic, to generate a periodic function that can be used to model its heartbeat, and graph your result. Be sure to include your chosen value of n in your Subject Heading.arrow_forward
- I need help explaining on this example on how can I define the Time-Domain Function, Apply the Laplace Transformation Formula, andarrow_forwardma Classes Term. Spring 2025 Title Details Credit Hours CRN Schedule Type Grade Mode Level Date Status Message *MATHEMATICS FOR MANAGEME... MTH 245, 400 4 54835 Online Normal Grading Mode Ecampus Undergradu... 03/21/2025 Registered **Web Registered... *SOIL SCIENCE CSS 205, 400 0 52298 Online Normal Grading Mode Undergraduate 03/21/2025 Waitlisted Waitlist03/21/2025 PLANT PATHOLOGY BOT 451, 400 4 56960 Online Normal Grading Mode Undergraduate 03/21/2025 Registered **Web Registered... Records: 3 Schedule Schedule Detailsarrow_forwardHere is an augmented matrix for a system of equations (three equations and three variables). Let the variables used be x, y, and z: 1 2 4 6 0 1 -1 3 0 0 1 4 Note: that this matrix is already in row echelon form. Your goal is to use this row echelon form to revert back to the equations that this represents, and then to ultimately solve the system of equations by finding x, y and z. Input your answer as a coordinate point: (x,y,z) with no spaces.arrow_forward
- 1 3 -4 In the following matrix perform the operation 2R1 + R2 → R2. -2 -1 6 After you have completed this, what numeric value is in the a22 position?arrow_forward5 -2 0 1 6 12 Let A = 6 7 -1 and B = 1/2 3 -14 -2 0 4 4 4 0 Compute -3A+2B and call the resulting matrix R. If rij represent the individual entries in the matrix R, what numeric value is in 131? Input your answer as a numeric value only.arrow_forward1 -2 4 10 My goal is to put the matrix 5 -1 1 0 into row echelon form using Gaussian elimination. 3 -2 6 9 My next step is to manipulate this matrix using elementary row operations to get a 0 in the a21 position. Which of the following operations would be the appropriate elementary row operation to use to get a 0 in the a21 position? O (1/5)*R2 --> R2 ○ 2R1 + R2 --> R2 ○ 5R1+ R2 --> R2 O-5R1 + R2 --> R2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning

Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Vector Spaces | Definition & Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=72GtkP6nP_A;License: Standard YouTube License, CC-BY
Understanding Vector Spaces; Author: Professor Dave Explains;https://www.youtube.com/watch?v=EP2ghkO0lSk;License: Standard YouTube License, CC-BY