Numerical Analysis
3rd Edition
ISBN: 9780134696454
Author: Sauer, Tim
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2.2, Problem 2CP
Add two-step back substitution to your script from Computer Problem 1, and use it to solve the systems in Exercise 4.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Solve the following system
3
y1 = -yı
= -Y1 – 5Y3
233
3/2
1
Y2 +,43
2y3
=
(a) yı = cie- + 2c3e2 (b) yı = ce¯* – C3e2 (c) y1 = cie*
= cje¯* + 2c3e² (b) y1 = c1e-
Y2 = c2e" + cze2*
Cze?¤
(c) y1 = c1e¯
2x
Y2 = cze" + c3e2*
Cze?
C2eª
Cze2r
92 =
Y3 = 2c3e2
-2x
= cje
Y3 = 2c3e2"
-2x
Сзе (е) у1 — Сје
Y3 = 2c3e2"
(d) ул
+ 2cze"
-
-2x
Y2 = C2e
+ C3e“
-2x
Y2 = C2e
+ C3e
2x
Y3
2c3e
Y3 = 2c3e
-2x
Imagine that as a ball is tossed, its motion is tracked on a coordinate plane. Given only a few of the points that the ball passes through, it is actually possible to determine the equation of the parabola that represents the ball’s path through the air. Assume the ball passes through the points (3,8), (5,20/3), and (6,5). Use this data to set up a system of three equations and three unknowns (a, b, and c) that will allow you to find the equation of the parabola and assume that x represents the number of seconds that have passed since the ball was thrown: determine approximately how long it will take for the ball to hit the ground.
One of your duties is the selection and disposal of boxes of obsolete files. According to regulations, ordinary files become obsolete after 24 months, confidential files after 36 months and classified files after 48 months. Which of the following boxes of files can be disposed of:
A box containing ordinary files dated 26 months ago and classified files dated 34 months ago.
A box containing ordinary files dated 38 months ago and confidential files dated 28 months ago.
Chapter 2 Solutions
Numerical Analysis
Ch. 2.1 - Use Gaussian elimination to solve the systems:...Ch. 2.1 - Use Gaussian elimination to solve the systems:...Ch. 2.1 - Solve by back substitution: a.3x4y+5z=23y4z=15z=5...Ch. 2.1 - Solve the tableau form a.[ 34236612382-1 ] b.[...Ch. 2.1 - Use the approximate operation count 2n3/3 for...Ch. 2.1 - Assume that your computer completes a 5000...Ch. 2.1 - Assume that a given computer requires 0.002...Ch. 2.1 - If a system of 3000 equations in 3000 unknowns can...Ch. 2.1 - Put together the code fragments in this section to...Ch. 2.1 - Let H denote the nn Hubert matrix, whose (i,j)...
Ch. 2.2 - Find the LU factorization of the given matrices....Ch. 2.2 - Find the LU factorization of the given matrices....Ch. 2.2 - Solve the system by finding the LU factorization...Ch. 2.2 - Solve the system by finding the LU factorization...Ch. 2.2 - Solve the equation Ax=b, where A=[...Ch. 2.2 - Given the 10001000 matrix A, your computer can...Ch. 2.2 - Assume that your computer can solve 1000 problems...Ch. 2.2 - Assume that your computer can solve a 20002000...Ch. 2.2 - Let A be an nn matrix. Assume that your computer...Ch. 2.2 - Use the code fragments for Gaussian elimination in...Ch. 2.2 - Add two-step back substitution to your script from...Ch. 2.3 - Find the norm A of each of the following...Ch. 2.3 - Find the (infinity norm) condition number of (a)...Ch. 2.3 - Find the forward and backward errors, and the...Ch. 2.3 - Find the forward and backward errors and error...Ch. 2.3 - Find the relative forward and backward errors and...Ch. 2.3 - Find the relative forward and backward errors and...Ch. 2.3 - Find the norm H of the 55 Hilbert matrix.Ch. 2.3 - (a) Find the condition number of the coefficient...Ch. 2.3 - (a) Find the condition number (in the infinity...Ch. 2.3 - (a) Find the (infinity norm) condition number of...Ch. 2.3 - (a) Prove that the infinity norm x is a vector...Ch. 2.3 - (a) Prove that the infinity norm A is a matrix...Ch. 2.3 - Prove that the matrix infinity norm is the...Ch. 2.3 - Prove that the matrix 1-norm is the operator norm...Ch. 2.3 - For the matrices in Exercise 1, find a vector x...Ch. 2.3 - For the matrices in Exercise 1, find a vector...Ch. 2.3 - Prob. 17ECh. 2.3 - Prob. 18ECh. 2.3 - For the nn matrix with entries Aij=5/(i+2j1), set...Ch. 2.3 - Carry out Computer Problem 1 for the matrix with...Ch. 2.3 - Let A be the nn matrix with entries Aij=| ij |+1 ....Ch. 2.3 - Carry out the steps of Computer Problem 3 for the...Ch. 2.3 - For what values of n does the solution in Computer...Ch. 2.3 - Use the MATLAB program from Computer Problem 2.1.1...Ch. 2.4 - Find the PA=LU factorization (using partial...Ch. 2.4 - Find the PA=LU factorization (using partial...Ch. 2.4 - Solve the system by finding the PA=LU...Ch. 2.4 - Solve the system by finding the PA=LU...Ch. 2.4 - Write down a 55 matrix P such that multiplication...Ch. 2.4 - (a) Write down the 44 matrix P such that...Ch. 2.4 - Change four entries of the leftmost matrix to make...Ch. 2.4 - Find the PA=LU factorization of the matrix A in...Ch. 2.4 - (a) Find the PA=LU factorization of A=[...Ch. 2.4 - (a) Assume that A is an nn matrix with entries |...Ch. 2.4 - Write a MATLAB program to define the structure...Ch. 2.4 - Plot the solution from Step 1 against the correct...Ch. 2.4 - Rerun the calculation in Step 1 for n=102k, where...Ch. 2.4 - Add a sinusoidal pile to the beam. This means...Ch. 2.4 - Rerun the calculation as in Step 3 for the...Ch. 2.4 - Now remove the sinusoidal load and add a 70 kg...Ch. 2.4 - If we also fix the free end of the diving board,...Ch. 2.4 - Ideas for further exploration: If the width of the...Ch. 2.5 - Compute the first two steps of the Jacobi and the...Ch. 2.5 - Rearrange the equations to form a strictly...Ch. 2.5 - Apply two steps of SOR to the systems in Exercise...Ch. 2.5 - Apply two steps of SOR to the systems in Exercise...Ch. 2.5 - Let be an eigenvalue of an nn matrix A. (a) Prove...Ch. 2.5 - Use the Jacobi Method to solve the sparse system...Ch. 2.5 - Use the Jacobi Method to solve the sparse system...Ch. 2.5 - Rewrite Program 2.2 to carry out Gauss-Seidel...Ch. 2.5 - Rewrite Program 2.2 to carry out SOR. Use =1.1 to...Ch. 2.5 - Carry out the steps of Computer Problem 1 with...Ch. 2.5 - Prob. 6CPCh. 2.5 - Using your program from Computer Problem 3. decide...Ch. 2.6 - Show that the following matrices are symmetric...Ch. 2.6 - Show that the following symmetric matrices are not...Ch. 2.6 - Prob. 3ECh. 2.6 - Show that the Cholesky factorization procedure...Ch. 2.6 - Prob. 5ECh. 2.6 - Find the Cholesky factorization A=RTR of each...Ch. 2.6 - Prob. 7ECh. 2.6 - Solve the system of equations by finding the...Ch. 2.6 - Prob. 9ECh. 2.6 - Find all numbers d such that A=[ 122d ] is...Ch. 2.6 - Prob. 11ECh. 2.6 - Prove that a principal submatrix of a symmetric...Ch. 2.6 - Solve the problems by carrying out the Conjugate...Ch. 2.6 - Solve the problems by carrying out the Conjugate...Ch. 2.6 - Carry out the conjugate gradient iteration in the...Ch. 2.6 - Prob. 1CPCh. 2.6 - Use a MATLAB version of conjugate gradient to...Ch. 2.6 - Solve the system Hx=b by the Conjugate Gradient...Ch. 2.6 - Solve the sparse problem of (2.45) by the...Ch. 2.6 - Prob. 5CPCh. 2.6 - Let A be the nn matrix with n=1000 and entries...Ch. 2.6 - Prob. 7CPCh. 2.6 - Prob. 8CPCh. 2.6 - Prob. 9CPCh. 2.6 - Prob. 10CPCh. 2.7 - Find the jacobian of the functions a....Ch. 2.7 - Use the Taylor expansion to find the linear...Ch. 2.7 - Sketch the two curves in the uv-plane, and find...Ch. 2.7 - Apply two steps of Newtons Method to the systems...Ch. 2.7 - Apply two steps of Broyden I to the systems in...Ch. 2.7 - Prob. 6ECh. 2.7 - Prove that (2.55) satisfies (2.53) and (2.54).Ch. 2.7 - Prove that (2.58) satisfies (2.56) and (2.57).Ch. 2.7 - Implement Newtons Method with appropriate starting...Ch. 2.7 - Use Newtons Method to find the three solutions of...Ch. 2.7 - Use Newtons Method to find the two solutions of...Ch. 2.7 - Apply Newtons Method to find both solutions of the...Ch. 2.7 - Use Multivariate Newtons Method to find the two...Ch. 2.7 - Prob. 6CPCh. 2.7 - Apply Broyden I with starting guesses x0=(1,1) and...Ch. 2.7 - Apply Broyden II with starting guesses (1, 1) and...Ch. 2.7 - Prob. 9CPCh. 2.7 - Apply Broyden Ito find the intersection point in...Ch. 2.7 - Apply Broyden II to find the sets of two...Ch. 2.7 - Apply Broyden II to find the intersection point in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- What operations can be performed on a linear system to arrive at an equivalent system?arrow_forwardSuppose the coal and steel industries form a closed economy. Every $1 produced by the coal industry requires $0.30 of coal and $0.70 of steel. Every $1 produced by steel requires $0.80 of coal and $0.20 of steel. Find the annual production (output) of coal and steel if the total annual production is $20 million.arrow_forwardExplain the differences between Gaussian elimination and Gauss-Jordan elimination.arrow_forward
- A tortoise and hare are competing in a 400-meter race. The arrogant hare gives the tortoise a 220-meter head start. When the start gun is fired, the hare begins running at a constant speed of 3.5 meters per second and the tortoise begins crawling at constant speed of 1.5 meters per second. Take out a piece of paper and read the above problem context again. You will prepare your written work and solutions on your own paper and upload it and the end of this question. Complete the problem solving process by: i. reading and re-reading the problem to identify the quantities in the situation; ii. making a drawing to represent the relevant quantities in the situation; iii. and defining the variable t to represent the number of seconds since the start of the race. a. Define a function f to determine the distance of the tortoise from the finish line in terms of the number of seconds, t, since the start of the race. Preview Solve f(t) = 0 and describe what your solution represents. t = Preview…arrow_forwardApproaching the month of Ramadan, PT Prima Sehat predicts that there will be an increase in demand for electronic goods, both TVs and microwaves. All of these electronic products have the same processing process, but have different processing times. For TV requires 4 hours of electronic processing and 2 hours of assembly. While the microwave requires 3 hours of electronic processing time and 1 hour of assembly. Of the current capacity, there is a working time for electronics as much as 240 hours, and per work time as much as 100 hours. The profit for each product is 7 (in tens of thousands) and 5 (in tens of thousands). Please use the simplex method linear programming method to solve the above casearrow_forwardFIV in 30mc 山+ 20 CALENDAR Travel to Home Today at 11:02 PM Green Street If... Lumen...Sign In 1 W3School... Rukayat Balogun User Settings My ClassesLog Out enohm homework manager Messages Forums Calendar Gradebook 097 11:30am Fall 2018> Assessment 3 - Applications of Systems of Equations Due in 11 hours, 29 minutes. Due Fri 12/21/2018 10:00 am he Nut Sha ck sells hazelnuts for $6.20 per pound and peanuts nuts for $4.90 per pound. How much of each type should be used to make a 34 pound mixture that sells for $5.82 per pound? Round answers to the nearest pound pounds of hazelnuts pounds of peanuts nuts Get help: Video 10 (0/1) : 1/10 ersion Points possible: 1 Unlimited attempts. Message instructor about this questic License Submitarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellElementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Elementary Geometry for College Students
Geometry
ISBN:9781285195698
Author:Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Solve ANY Optimization Problem in 5 Steps w/ Examples. What are they and How do you solve them?; Author: Ace Tutors;https://www.youtube.com/watch?v=BfOSKc_sncg;License: Standard YouTube License, CC-BY
Types of solution in LPP|Basic|Multiple solution|Unbounded|Infeasible|GTU|Special case of LP problem; Author: Mechanical Engineering Management;https://www.youtube.com/watch?v=F-D2WICq8Sk;License: Standard YouTube License, CC-BY
Optimization Problems in Calculus; Author: Professor Dave Explains;https://www.youtube.com/watch?v=q1U6AmIa_uQ;License: Standard YouTube License, CC-BY
Introduction to Optimization; Author: Math with Dr. Claire;https://www.youtube.com/watch?v=YLzgYm2tN8E;License: Standard YouTube License, CC-BY