
Numerical Analysis
3rd Edition
ISBN: 9780134696454
Author: Sauer, Tim
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2.2, Problem 1CP
Use the code fragments for Gaussian elimination in the previous section to write a MATLAB script to take a matrix A as input and output L and U. No row exchanges are allowed—the program should be designed to shut down if it encounters a zero pivot. Check your program by factoring the matrices in Exercise 2.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Using Karnaugh maps and Gray coding, reduce the following circuit represented as a table and write the final circuit in simplest form (first in terms of number of gates then in terms of fan-in of those gates). HINT: Pay closeattention to both the 1’s and the 0’s of the function.
Recall the RSA encryption/decryption system. The following questions are based on RSA. Suppose n (=15) is the product of the two prime numbers 3 and 5.1. Find an encryption key e for for the pair (e, n)2. Find a decryption key d for for the pair (d, n)3. Given the plaintext message x = 3, find the ciphertext y = x^(e) (where x^e is the message x encoded with encryption key e)4. Given the ciphertext message y (which you found in previous part), Show that the original message x = 3 can be recovered using (d, n)
Theorem 1: A number n ∈ N is divisible by 3 if and only if when n is writtenin base 10 the sum of its digits is divisible by 3. As an example, 132 is divisible by 3 and 1 + 3 + 2 is divisible by 3.1. Prove Theorem 1
2. Using Theorem 1 construct an NFA over the alphabet Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}which recognizes the language {w ∈ Σ^(∗)| w = 3k, k ∈ N}.
Chapter 2 Solutions
Numerical Analysis
Ch. 2.1 - Use Gaussian elimination to solve the systems:...Ch. 2.1 - Use Gaussian elimination to solve the systems:...Ch. 2.1 - Solve by back substitution: a.3x4y+5z=23y4z=15z=5...Ch. 2.1 - Solve the tableau form a.[ 34236612382-1 ] b.[...Ch. 2.1 - Use the approximate operation count 2n3/3 for...Ch. 2.1 - Assume that your computer completes a 5000...Ch. 2.1 - Assume that a given computer requires 0.002...Ch. 2.1 - If a system of 3000 equations in 3000 unknowns can...Ch. 2.1 - Put together the code fragments in this section to...Ch. 2.1 - Let H denote the nn Hubert matrix, whose (i,j)...
Ch. 2.2 - Find the LU factorization of the given matrices....Ch. 2.2 - Find the LU factorization of the given matrices....Ch. 2.2 - Solve the system by finding the LU factorization...Ch. 2.2 - Solve the system by finding the LU factorization...Ch. 2.2 - Solve the equation Ax=b, where A=[...Ch. 2.2 - Given the 10001000 matrix A, your computer can...Ch. 2.2 - Assume that your computer can solve 1000 problems...Ch. 2.2 - Assume that your computer can solve a 20002000...Ch. 2.2 - Let A be an nn matrix. Assume that your computer...Ch. 2.2 - Use the code fragments for Gaussian elimination in...Ch. 2.2 - Add two-step back substitution to your script from...Ch. 2.3 - Find the norm A of each of the following...Ch. 2.3 - Find the (infinity norm) condition number of (a)...Ch. 2.3 - Find the forward and backward errors, and the...Ch. 2.3 - Find the forward and backward errors and error...Ch. 2.3 - Find the relative forward and backward errors and...Ch. 2.3 - Find the relative forward and backward errors and...Ch. 2.3 - Find the norm H of the 55 Hilbert matrix.Ch. 2.3 - (a) Find the condition number of the coefficient...Ch. 2.3 - (a) Find the condition number (in the infinity...Ch. 2.3 - (a) Find the (infinity norm) condition number of...Ch. 2.3 - (a) Prove that the infinity norm x is a vector...Ch. 2.3 - (a) Prove that the infinity norm A is a matrix...Ch. 2.3 - Prove that the matrix infinity norm is the...Ch. 2.3 - Prove that the matrix 1-norm is the operator norm...Ch. 2.3 - For the matrices in Exercise 1, find a vector x...Ch. 2.3 - For the matrices in Exercise 1, find a vector...Ch. 2.3 - Prob. 17ECh. 2.3 - Prob. 18ECh. 2.3 - For the nn matrix with entries Aij=5/(i+2j1), set...Ch. 2.3 - Carry out Computer Problem 1 for the matrix with...Ch. 2.3 - Let A be the nn matrix with entries Aij=| ij |+1 ....Ch. 2.3 - Carry out the steps of Computer Problem 3 for the...Ch. 2.3 - For what values of n does the solution in Computer...Ch. 2.3 - Use the MATLAB program from Computer Problem 2.1.1...Ch. 2.4 - Find the PA=LU factorization (using partial...Ch. 2.4 - Find the PA=LU factorization (using partial...Ch. 2.4 - Solve the system by finding the PA=LU...Ch. 2.4 - Solve the system by finding the PA=LU...Ch. 2.4 - Write down a 55 matrix P such that multiplication...Ch. 2.4 - (a) Write down the 44 matrix P such that...Ch. 2.4 - Change four entries of the leftmost matrix to make...Ch. 2.4 - Find the PA=LU factorization of the matrix A in...Ch. 2.4 - (a) Find the PA=LU factorization of A=[...Ch. 2.4 - (a) Assume that A is an nn matrix with entries |...Ch. 2.4 - Write a MATLAB program to define the structure...Ch. 2.4 - Plot the solution from Step 1 against the correct...Ch. 2.4 - Rerun the calculation in Step 1 for n=102k, where...Ch. 2.4 - Add a sinusoidal pile to the beam. This means...Ch. 2.4 - Rerun the calculation as in Step 3 for the...Ch. 2.4 - Now remove the sinusoidal load and add a 70 kg...Ch. 2.4 - If we also fix the free end of the diving board,...Ch. 2.4 - Ideas for further exploration: If the width of the...Ch. 2.5 - Compute the first two steps of the Jacobi and the...Ch. 2.5 - Rearrange the equations to form a strictly...Ch. 2.5 - Apply two steps of SOR to the systems in Exercise...Ch. 2.5 - Apply two steps of SOR to the systems in Exercise...Ch. 2.5 - Let be an eigenvalue of an nn matrix A. (a) Prove...Ch. 2.5 - Use the Jacobi Method to solve the sparse system...Ch. 2.5 - Use the Jacobi Method to solve the sparse system...Ch. 2.5 - Rewrite Program 2.2 to carry out Gauss-Seidel...Ch. 2.5 - Rewrite Program 2.2 to carry out SOR. Use =1.1 to...Ch. 2.5 - Carry out the steps of Computer Problem 1 with...Ch. 2.5 - Prob. 6CPCh. 2.5 - Using your program from Computer Problem 3. decide...Ch. 2.6 - Show that the following matrices are symmetric...Ch. 2.6 - Show that the following symmetric matrices are not...Ch. 2.6 - Prob. 3ECh. 2.6 - Show that the Cholesky factorization procedure...Ch. 2.6 - Prob. 5ECh. 2.6 - Find the Cholesky factorization A=RTR of each...Ch. 2.6 - Prob. 7ECh. 2.6 - Solve the system of equations by finding the...Ch. 2.6 - Prob. 9ECh. 2.6 - Find all numbers d such that A=[ 122d ] is...Ch. 2.6 - Prob. 11ECh. 2.6 - Prove that a principal submatrix of a symmetric...Ch. 2.6 - Solve the problems by carrying out the Conjugate...Ch. 2.6 - Solve the problems by carrying out the Conjugate...Ch. 2.6 - Carry out the conjugate gradient iteration in the...Ch. 2.6 - Prob. 1CPCh. 2.6 - Use a MATLAB version of conjugate gradient to...Ch. 2.6 - Solve the system Hx=b by the Conjugate Gradient...Ch. 2.6 - Solve the sparse problem of (2.45) by the...Ch. 2.6 - Prob. 5CPCh. 2.6 - Let A be the nn matrix with n=1000 and entries...Ch. 2.6 - Prob. 7CPCh. 2.6 - Prob. 8CPCh. 2.6 - Prob. 9CPCh. 2.6 - Prob. 10CPCh. 2.7 - Find the jacobian of the functions a....Ch. 2.7 - Use the Taylor expansion to find the linear...Ch. 2.7 - Sketch the two curves in the uv-plane, and find...Ch. 2.7 - Apply two steps of Newtons Method to the systems...Ch. 2.7 - Apply two steps of Broyden I to the systems in...Ch. 2.7 - Prob. 6ECh. 2.7 - Prove that (2.55) satisfies (2.53) and (2.54).Ch. 2.7 - Prove that (2.58) satisfies (2.56) and (2.57).Ch. 2.7 - Implement Newtons Method with appropriate starting...Ch. 2.7 - Use Newtons Method to find the three solutions of...Ch. 2.7 - Use Newtons Method to find the two solutions of...Ch. 2.7 - Apply Newtons Method to find both solutions of the...Ch. 2.7 - Use Multivariate Newtons Method to find the two...Ch. 2.7 - Prob. 6CPCh. 2.7 - Apply Broyden I with starting guesses x0=(1,1) and...Ch. 2.7 - Apply Broyden II with starting guesses (1, 1) and...Ch. 2.7 - Prob. 9CPCh. 2.7 - Apply Broyden Ito find the intersection point in...Ch. 2.7 - Apply Broyden II to find the sets of two...Ch. 2.7 - Apply Broyden II to find the intersection point in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Recall the RSA encryption/decryption system. The following questions are based on RSA. Suppose n (=15) is the product of the two prime numbers 3 and 5.1. Find an encryption key e for for the pair (e, n)2. Find a decryption key d for for the pair (d, n)3. Given the plaintext message x = 3, find the ciphertext y = x^(e) (where x^e is the message x encoded with encryption key e)4. Given the ciphertext message y (which you found in previous part), Show that the original message x = 3 can be recovered using (d, n)arrow_forwardFind the sum of products expansion of the function F(x, y, z) = ¯x · y + x · z in two ways: (i) using a table; and (ii) using Boolean identities.arrow_forwardGive both a machine-level description (i.e., step-by-step description in words) and a state-diagram for a Turing machine that accepts all words over the alphabet {a, b} where the number of a’s is greater than or equal to the number of b’s.arrow_forward
- Compute (7^ (25)) mod 11 via the algorithm for modular exponentiation.arrow_forwardProve that the sum of the degrees in the interior angles of any convex polygon with n ≥ 3 sides is (n − 2) · 180. For the base case, you must prove that a triangle has angles summing to 180 degrees. You are permitted to use thefact when two parallel lines are cut by a transversal that corresponding angles are equal.arrow_forwardAnswer the following questions about rational and irrational numbers.1. Prove or disprove: If a and b are rational numbers then a^b is rational.2. Prove or disprove: If a and b are irrational numbers then a^b is irrational.arrow_forward
- Prove the following using structural induction: For any rooted binary tree T the number of vertices |T| in T satisfies the inequality |T| ≤ (2^ (height(T)+1)) − 1.arrow_forward(a) Prove that if p is a prime number and p|k^2 for some integer k then p|k.(b) Using Part (a), prove or disprove: √3 ∈ Q.arrow_forwardProvide a context-free grammar for the language {a^ (i) b^ (j) c^ (k) | i, j, k ∈ N, i = j or i = k}. Briefly explain (no formal proof needed) why your context-free grammar is correct and show that it produces the word aaabbccc.arrow_forward
- The Martinezes are planning to refinance their home. The outstanding balance on their original loan is $150,000. Their finance company has offered them two options. (Assume there are no additional finance charges. Round your answers to the nearest cent.) Option A: A fixed-rate mortgage at an interest rate of 4.5%/year compounded monthly, payable over a 30-year period in 360 equal monthly installments.Option B: A fixed-rate mortgage at an interest rate of 4.25%/year compounded monthly, payable over a 12-year period in 144 equal monthly installments. (a) Find the monthly payment required to amortize each of these loans over the life of the loan. option A $ option B $ (b) How much interest would the Martinezes save if they chose the 12-year mortgage instead of the 30-year mortgage?arrow_forwardThe Martinezes are planning to refinance their home. The outstanding balance on their original loan is $150,000. Their finance company has offered them two options. (Assume there are no additional finance charges. Round your answers to the nearest cent.) Option A: A fixed-rate mortgage at an interest rate of 4.5%/year compounded monthly, payable over a 30-year period in 360 equal monthly installments.Option B: A fixed-rate mortgage at an interest rate of 4.25%/year compounded monthly, payable over a 12-year period in 144 equal monthly installments. (a) Find the monthly payment required to amortize each of these loans over the life of the loan. option A $ option B $ (b) How much interest would the Martinezes save if they chose the 12-year mortgage instead of the 30-year mortgage?arrow_forwardGiven: Circle J 2 What is the value of y? A. 38 C. 68 B. 50 D. 92arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning



Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning

Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
Matrix Factorization - Numberphile; Author: Numberphile;https://www.youtube.com/watch?v=wTUSz-HSaBg;License: Standard YouTube License, CC-BY