
Concept explainers
Whether both wavelength and lattice spacing can be determined by measuring the diffraction peaks corresponding to the first three orders.

Answer to Problem 56P
Solution:
By measuring the diffraction peaks corresponding to the first three orders alone, both wavelength and lattice spacing cannot be determined.
Explanation of Solution
Bragg’s law gives the expression that relates the lattice spacing, wavelength and the glancing angle.
If the spacing between the planes of a crystal is d and the X rays of wavelength are incident on the planes at a glancing angle , then according to Bragg’s equation, the mth maximum is obtained according to the expression,
The peaks correspond to maximum intensity and the glancing angle corresponding to the peaks can be measured.
For the first, second and the third orders, the Bragg’s law expression is written as,
The three equations given above can merely provide relationships between the glancing angles, but can return any values of . To determine the lattice spacing, the value of the wavelength must be known and vice a versa.
Chapter 25 Solutions
Physics: Principles with Applications
Additional Science Textbook Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Campbell Biology (11th Edition)
Chemistry: Structure and Properties (2nd Edition)
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Cosmic Perspective Fundamentals
- A circular wire with radius 0.4 meters in on x-y plane. There is a constant Magnetic field with 14T strengthtowards z-axis. Find the magnitude of the electromotive force and the direction of the current for a) B decreasesto 10T in 5 seconds. B) B is rotated by 45 degrees and the area doubles in 4 seconds.arrow_forwardWrite the expression for the magnetic flux inside a region om x-z plane at y=0 bounded by z=3x z=0 x=5 x=7due to a magnetic field B = f(x,y,z) i +g(x,y,z) j + h(x,y,z) karrow_forwardExplain mutual inductance of two loops facing one another and compare with one loop inside the other.arrow_forward
- Two very long wires carry each 3 amps current in the same direction along the z-axis (outward). First is at x=0y=0 current is upward. Second at x=0 y=3 current is also upward. Find the net magnetic field at x=4 y=3.arrow_forwardFind the integral expression for the magnetic field at x=5 y=6 due to a wire on the x axis with length 5 meters onend at x=0 and the other at x=5. Don’t take the integralarrow_forwardTwo very long wires carry current along y-axis. First is at x=0 0.45 amps current is upward. Second at x=5 currentwith 0.65 amps current downward. Find the net magnetic a) Two meters to the left of the first wire. b) Twometers to the right of the first wire. a) Two meters to the right of the second wire. b) Two meters to the right ofthe second wire.arrow_forward
- ! Required information The PV diagram shown is for a heat engine that uses 1.030 mol of a diatomic ideal gas as its working substance. In the constant-temperature processes A and C, the gas is in contact with reservoirs at temperatures 373 K and 273 K, respectively. In constant-volume process B, the gas temperature decreases as heat flows into the cold reservoir. In constant- volume process D, the gas temperature increases as heat flows from the hot reservoir. Pressure (kPa) 160 150 A 140 D 373 K 130 120 110 100 273 K C 90 80 B 0.019 0.02 0.021 0.022 0.023 0.024 0.025 0.026 Volume (m³) To compare the efficiency of the heat engine to that of an ideal engine, what is the ratio of the efficiency of an ideal engine using the same reservoirs to that of the heat engine, if the heat input per cycle is 2854 J?arrow_forward4 1.00 mol of oxygen gas (O2) is heated at a constant pressure of 1.00 atm from 10.0°C to 25.0°C. How much heat is absorbed by the gas? Multiple Choice О 389 J о 544 J О 436 J О 288 Jarrow_forwardIL 6. For the sentence, why are the red lines representing the formants and the blue line representing the fundamental frequency always angled instead of horizontal?arrow_forward
- CH 57. A 190-g block is launched by compressing a spring of constant k = = 200 N/m by 15 cm. The spring is mounted horizontally, and the surface directly under it is frictionless. But beyond the equilibrium position of the spring end, the surface has frictional coefficient μ = 0.27. This frictional surface extends 85 cm, fol- lowed by a frictionless curved rise, as shown in Fig. 7.21. After it's launched, where does the block finally come to rest? Measure from the left end of the frictional zone. Frictionless μ = 0.27 Frictionless FIGURE 7.21 Problem 57arrow_forward3. (a) Show that the CM of a uniform thin rod of length L and mass M is at its center (b) Determine the CM of the rod assuming its linear mass density 1 (its mass per unit length) varies linearly from λ = λ at the left end to double that 0 value, λ = 2λ, at the right end. y 0 ·x- dx dm=λdx x +arrow_forwardShrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. please show all stepsarrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





