Concept explainers
Repeat Problem 46 assuming that the final image is located 25 cm from the eyepiece (near point of a normal eye)
Part (a)To determine:
The total magnification of the given microscope.
Answer to Problem 44P
Solution:
The magnification of the given microscope is found to be 900 x.
Explanation of Solution
Microscopes are devices used to magnify tiny objects. The construction of the microscope is similar to that of the telescope. The objective produces a real and inverted image of the object, which falls between the focus and the optic centre of the eyepiece. The eyepiece produces an enlarged virtual image of the image formed by the objective. The final image formed is inverted and enlarged.
The total magnification of the microscope is the product of the magnification of the objective and the eyepiece lenses. When the image is located at the near point of the eye, the eyepiece, which behaves as a simple magnifying lens, has its magnification increased by 1, when compared to the magnification it produces for the relaxed eye.
Given:
The magnification of the eyepiece
The magnification of the objective
Barrel length of the microscope
Formula used:
Calculation:
Use the given values of the magnification in the formula and simplify.
Part (b)To determine:
The focal length of the objective and the eyepiece lenses.
Answer to Problem 44P
Solution:
The focal length of the objective lens was found to be 0.299 cm and the focal length of the eyepiece was found to be 1.79 cm.
Explanation of Solution
Using the magnification of the eyepiece, the focal length of the eyepiece can be determined. The image of the object is formed at the near point of the eye.
Using the thin lens equation for the eyepiece, the object distance for the eyepiece is determined.
The image distance for the objective is the difference between the barrel length l and the object distance for the eyepiece.
Using the expression for magnification of the objective, the object distance is calculated.
With the object distance for the objective determined, the thin lens equation is used to calculate the focal length of the objective.
Given:
The magnification of the eyepiece
The magnification of the objective
Barrel length of the microscope
Formula used:
For a relaxed eye, the image is formed at infinity. If the values of and are very less compared to the value of l, then,
The magnification of the objective is given by
Where, the object distance is and the image distance is
The thin lens equation is written as,
Calculation:
Use the given values of N and , calculate the value of the focal length of the eyepiece
Using the given values in the thin lens equation for the eyepiece, the object distance for the eyepiece is determined.
The object distance for the eyepiece is given by
Calculate the image distance for the objective, using the calculated value of and the given value of l.
The object distance is calculated using the expression,
Use the thin lens equation to calculate the focal length of the objective.
On solving the equation, the focal length of the objective is found to be .
Part (c)To determine:
The distance at which the object must be placed to see it in focus.
Answer to Problem 44P
Solution:
The object must be placed at 0.301 cm from the objective, to see it in focus.
Explanation of Solution
From the calculated value of the focal length of the eyepiece, the object distance can be determined.
Given:
The magnification of the eyepiece
The magnification of the objective
Barrel length of the microscope
Formula used:
The magnification of the objective is given by
Where, the object distance is and the image distance is .
Calculation:
The object distance is calculated using the expression,
Use the values of calculated in the previous section to calculate the object distance.
Chapter 25 Solutions
Physics: Principles with Applications
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
College Physics: A Strategic Approach (3rd Edition)
Applications and Investigations in Earth Science (9th Edition)
Concepts of Genetics (12th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Organic Chemistry (8th Edition)
- Fractions 1. Covert 5/7 to a decimal 2. 5/7 x 3/8 3. 2/5 divided 4/9 4. covert 37/ 19 to a decimalarrow_forwardthis is an exam past paper question that i need help with becuase i am reviewing not a graded assignmentarrow_forwardsunny (1) -13- end. One box contains nothing inside; one has a piece of resistance wire between the terminals You are provided with three sealed identical matchboxes labelled A, B and C, with terminals at each and the other, a semi-conductor diode. Plan and design an experiment to identify the contents of each box. You are provided with the following elements for your apparatus: Ammeter Low voltage power supply Connecting wires Labelled circuit diagram Draw a well-labelled circuit diagram to show how you would connect the apparatus listed above to each matchbox. (3 maarrow_forward
- RAD127 Radiographic Equipment and Computers SI Units in Radiography Ch. 1 & 2 Instructions: Provide the units for each of the following in full and short forms 1. Mass - kg, 9 or (1b)) ・ 2. Energy, Work - W = FD,J 3. Air kerma -(Gya) 4. Absorbed Dose- 5. Effective Dose J/kg (94+) jlkg J/kg, Sv 6. Radioactivity - 5-1, Bq 7. Weight 8. Time 9. Force 10. Power B9 wt, wt-mg, N -(s) F= ma, N, OR 1b. (JIS), P= work It = Fdlt, Jarrow_forwardanswer 1-8arrow_forward1 . Solve the equation 2/7=y/3 for y. 2. Solve the equation x/9=2/6 for x. 3. Solve the equation z + 4 = 10 This is algebra and the equation is fraction.arrow_forward
- two satellites are in circular orbits around the Earth. Satellite A is at an altitude equal to the Earth's radius, while satellite B is at an altitude equal to twice the Earth's radius. What is the ratio of their periods, Tb/Taarrow_forwardFresnel lens: You would like to design a 25 mm diameter blazed Fresnel zone plate with a first-order power of +1.5 diopters. What is the lithography requirement (resolution required) for making this lens that is designed for 550 nm? Express your answer in units of μm to one decimal point. Fresnel lens: What would the power of the first diffracted order of this lens be at wavelength of 400 nm? Express your answer in diopters to one decimal point. Eye: A person with myopic eyes has a far point of 15 cm. What power contact lenses does she need to correct her version to a standard far point at infinity? Give your answer in diopter to one decimal point.arrow_forwardParaxial design of a field flattener. Imagine your optical system has Petzal curvature of the field with radius p. In Module 1 of Course 1, a homework problem asked you to derive the paraxial focus shift along the axis when a slab of glass was inserted in a converging cone of rays. Find or re-derive that result, then use it to calculate the paraxial radius of curvature of a field flattener of refractive index n that will correct the observed Petzval. Assume that the side of the flattener facing the image plane is plano. What is the required radius of the plano-convex field flattener? (p written as rho )arrow_forward
- 3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons. Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.arrow_forward3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons. Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.arrow_forwardNo chatgpt pls will upvotearrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON