College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 25, Problem 3CQ
Why is the index of refraction always greater than or equal to 1?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The index of refraction for water is about 4/3. What happens to light when it travels
from air to water?
Its speed decreases to 3c/4, and its wavelength decreases by a factor of 3/4
Its speed decreases to 3c/4 and its wavelength increases by a factor of 4/3.
Its speed increases to 4c/3, and its frequency decreases by a factor of 3/4.
Its speed decreases to 3c/4, and its frequency increases b 4/3.
What is the index of refraction of this prism?
52.2°
60⁰
60°
52.2°
60°
A catfish is 1.8 m below the surface of a smooth lake. (a) What is the diameter of the circle on the surface through which the fish can see the world outside the water? (b) If the fish descends, does the diameter of the circle increase, decrease, or remain the same? Assume that the index of refraction of water is 1.333.
Chapter 25 Solutions
College Physics
Ch. 25 - Using the law of reflection, explain how powder...Ch. 25 - Diffusion by reflection from a rough surface is...Ch. 25 - Why is the index of refraction always greater than...Ch. 25 - Does the fact that the light flash from lightning...Ch. 25 - Will light change direction toward or away from...Ch. 25 - Explain why an object in water always appears to...Ch. 25 - Explain why a person’s legs appeal very short when...Ch. 25 - Why is the front surface of a thermometer curved...Ch. 25 - Suppose light were incident from air onto a...Ch. 25 - A ring with a colorless gemstone is dropped into...
Ch. 25 - A high-quality diamond may be quite clear and...Ch. 25 - Is it possible that total internal reflection...Ch. 25 - The most common type at mirage is an illusion that...Ch. 25 - It can he argued that a flat piece of glass, such...Ch. 25 - You can often see a reflection when looking at a...Ch. 25 - When you focus a camera, you adjust the distance...Ch. 25 - A thin lens has two focal points, one on either...Ch. 25 - Will the focal length of a lens change when it is...Ch. 25 - What are the differences between teal and virtual...Ch. 25 - Can you see a virtual image? Can you photograph...Ch. 25 - Is it necessary to project a real image onto a...Ch. 25 - At what distance is an image always locatedat do,...Ch. 25 - Under what circumstances will an image be located...Ch. 25 - What is meant by a negative magnification? What is...Ch. 25 - Can a case 1 image be larger than the object even...Ch. 25 - Figure 25.49 shows a light bulb between two...Ch. 25 - Devise an arrangement of mirrors allowing you to...Ch. 25 - If you wish to see your entire body in a flat...Ch. 25 - It can be argued than a flat mirror has an in?nite...Ch. 25 - Why are diverging mirrors often used for rear-view...Ch. 25 - Suppose a man stands in front of a mirror as shown...Ch. 25 - Show that when light reflects from two mirrors...Ch. 25 - Light shows staged with lasers use moving mirrors...Ch. 25 - A flat minor is neither converging nor diverging....Ch. 25 - What is the speed of light in water? In glycerine?Ch. 25 - What is the speed of light in air? In crown glass?Ch. 25 - Calculate the index of refraction for a medium in...Ch. 25 - In what substance in Table 25.1 is the speed of...Ch. 25 - There was a major collision of an asteroid with...Ch. 25 - A scuba diver training in a pool looks at his...Ch. 25 - Components of some computers communicate with each...Ch. 25 - (a) Using information in Figure 25.53, find the...Ch. 25 - Suppose you have an unknown clear substance...Ch. 25 - On the Moon’s surface, lunar astronauts placed a...Ch. 25 - Suppose Figure 25.54 represents a ray of light...Ch. 25 - Figure 25.54 shows a ray of light passing from one...Ch. 25 - Unreasonable Results Suppose light travels from...Ch. 25 - Construct Your Own Problem Consider sunlight...Ch. 25 - Unreasonable Results Light traveling from water to...Ch. 25 - Verify that the critical angle for light going...Ch. 25 - (a) At the end of Example 25.4, it was stated that...Ch. 25 - An optical fiber uses flint glass clad with crown...Ch. 25 - At what minimum angle will you get total internal...Ch. 25 - Suppose you are using total internal reflection to...Ch. 25 - You can determine me index of refraction of a...Ch. 25 - A ray of light, emitted beneath the surface of an...Ch. 25 - A light ray entering an optical fiber surrounded...Ch. 25 - (a) What is me ratio of the speed of red light to...Ch. 25 - A beam of white light goes from air into water at...Ch. 25 - By how much do the critical angles for red (660...Ch. 25 - (a) A narrow beam of light containing yellow (580...Ch. 25 - A parallel beam of light containing orange (610...Ch. 25 - A ray of 610 nm light goes from air into fused...Ch. 25 - A narrow beam of light containing red (660 nm) and...Ch. 25 - A narrow beam of white light enters a prism made...Ch. 25 - What is the power in diopters at a camera lens...Ch. 25 - Your camera's zoom lens has an adjustable focal...Ch. 25 - What is the focal length of 1.75 D reading glasses...Ch. 25 - You note that your prescription for new eyeglasses...Ch. 25 - How far from the lens must the film in a camera...Ch. 25 - A certain slide projector has a 100 mm focal...Ch. 25 - A doctor examines a mole with a 15.0 cm focal...Ch. 25 - How far from a piece of paper must you hold your...Ch. 25 - A camera with a 50.0 mm focal length lens is being...Ch. 25 - A camera lens used for taking close-up photographs...Ch. 25 - Suppose your 50.00 mm local length camera lens is...Ch. 25 - (a) What is the focal length of a magnifying glass...Ch. 25 - What magnification will be produced by a lens of...Ch. 25 - In Example 25.7, the magnification of a book held...Ch. 25 - Suppose a 200 mm focal length telephoto lens is...Ch. 25 - A camera with a 100 mm focal length lens is used...Ch. 25 - Combine thin lens equations to show that the...Ch. 25 - What is the focal length of a makeup mirror that...Ch. 25 - Some telephoto cameras use a mirror rather than a...Ch. 25 - (a) Calculate the focal length of the mirror...Ch. 25 - Find the magnification of the heater element in...Ch. 25 - What is the focal length of a makeup mirror that...Ch. 25 - A shopper standing 3.00 m from a convex security...Ch. 25 - An object 1.50 cm high is held 3.00 cm from a...Ch. 25 - Ray tracing for a flat mirror shows that the image...Ch. 25 - Show that for a flat mirror hi= ho, knowing that...Ch. 25 - Use the law of reflection to prove that the focal...Ch. 25 - Referring to the electric room heater considered...Ch. 25 - Consider a 250-W heat lamp fixed to the ceiling in...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. A cyclist goes around a level, circular track at constant speed. Do you agree or disagree with the following...
College Physics: A Strategic Approach (4th Edition)
21.41 Three negative point charges lie along a line as shown in Fig. E21.41. Find the magnitude and direction o...
University Physics with Modern Physics (14th Edition)
The proton is a composite particle composed of three quarks, all of which are either up quarks (u; charge +23e)...
Essential University Physics: Volume 2 (3rd Edition)
16. On the Apollo 14 mission to the moon, astronaut Alan Shepard hit a golf ball with a 6 iron. The free-fall a...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
3. (l) What is the magnitude of the force a +25 µc charge exerts on a +2.5 mC charge 16 cm away?
Physics: Principles with Applications
When the momentum of an object or system of objects does not change with time, the momentum of the object or sy...
Tutorials in Introductory Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why is the index of refraction always greater than or equal to 1?arrow_forwardThe index of refraction for water is about 43. What happens as a beam of light travels from air into water? (a) Its speed increases to 43c, and its frequency decreases. (b) Its speed decreases to 34c, and its wavelength decreases by a factor of 34. (c) Its speed decreases to 34c, and its wavelength increases by a factor of 43. (d) Its speed and frequency remain the same. (e) Its speed decreases to 34c, and its frequency increases.arrow_forwardHow can you use total internal reflection to estimate the index of refraction of a medium?arrow_forward
- Light passes from a material with index of refraction 1.3 into one with index of refraction 1.2. Compared with the incident ray, what happens to the refracted ray? (a) It bends toward the normal. (b) It is undeflected. (c) It bends away from the normal.arrow_forwardLight traveling in a medium of index of refraction n1 is incident on another medium having an index of refraction n2. Under which of the following conditions can total internal reflection occur at the interface of the two media? (a) The indices of refraction have the relation n2 n1. (b) The indices of refraction have the relation n1 n2. (c) Light travels slower in the second medium than in the first. (d) The angle of incidence is less than the critical angle. (e) The angle of incidence must equal the angle of refraction.arrow_forwardWhat happens to a light wave when it travels from air into glass? (a) Its speed remains the same. (b) Its speed increases. (c) Its wavelength increases. (d) Its wavelength remains the same. (e) Its frequency remains the same.arrow_forward
- The end of a solid glass rod of refractive index 1.50 is polished to have the shape of a hemispherical surface of radius 1.0 cm. A small object is placed in air (refractive index 1.00) on the axis 5.0 cm to the left of the vertex. Determine the position of the image.arrow_forwardA 4.00-m-long pole stands vertically in a freshwater lake having a depth of 2.00 m. The Sun is 40.0° above the horizontal. Determine the length of the pole’s shadow on the bottom of the lake.arrow_forwardFor specular reflection, what is the situation with an angle of incidence of (a) 0 and (b) 90?arrow_forward
- KEY TERMS 1. reflection (7.1) 2. ray 3. law of reflection 4. specular reflection 5. diffuse reflection 6. refraction (7.2) 7. index of refraction 8. total internal reflection 9. dispersion 10. focal length (7.3) 11. concave (converging) mirror 12. convex (diverging) mirror 13. real image 14. virtual image 15. converging lens (7.4) 16. diverging lens 17. polarization (7.5) 18. linearly polarized light 19. diffraction (7.6) 20. principle of superposition 21. constructive interference 22. destructive interference For each of the following items, fill in the number of the appropriate Key Term from the preceding list. h. _____ A change in the direction of light at a surfacearrow_forwardKEY TERMS 1. reflection (7.1) 2. ray 3. law of reflection 4. specular reflection 5. diffuse reflection 6. refraction (7.2) 7. index of refraction 8. total internal reflection 9. dispersion 10. focal length (7.3) 11. concave (converging) mirror 12. convex (diverging) mirror 13. real image 14. virtual image 15. converging lens (7.4) 16. diverging lens 17. polarization (7.5) 18. linearly polarized light 19. diffraction (7.6) 20. principle of superposition 21. constructive interference 22. destructive interference For each of the following items, fill in the number of the appropriate Key Term from the preceding list. b. _____ i = rarrow_forwardLight enters a prism of crown glass and refracts at an angle of 5.00 with respect to the normal at the interface. The crown glass has a mean index of refraction of 1.51. It is combined with one flint glass prism (n = 1.65) to produce no net deviation. a. Find the apex angle of the flint glass. b. Assume the index of refraction for violet light (v = 430 nm) is nv = 1.528 and the index of refraction for red light (r = 768 nm) is nr = 1.511 for crown glass. For flint glass using the same wavelengths, nv = 1.665 and nr = 1.645. Find the net dispersion.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning