College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 25, Problem 7CQ
Explain why a person’s legs appeal very short when wading in a pool. Justify your explanation with a ray diagram showing the path of rays from the feel to the eye of an observer who is out of the water.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A laser beam travels from air (n=1) into glass (n=1.5) and then into gelatin. The incident ray makes a 58.0o angle with the normal in the air before it enters the glass and a 36.4o angle with the normal after it enters the gelatin.
In a neat and organized fashion, write out a solution which includes the following:
A sketch of the physical situation with all given physical quantities clearly labeled.
Draw a ray diagram showing all reflected and refracted rays in this situation and all angles clearly labeled.
Determine (a) the angle the refracted ray makes with the normal in the glass and (b) the index of refraction of the gelatin. Clearly show all steps, starting from generalized equations. Explain your mathematical work in words. Your explanation should cover both what you did and the thought process behind why you did that.
Evaluate your answer to determine whether it is reasonable or not. Consider all aspects of your answer (the numerical value, sign, and units) in your evaluation.…
A laser beam travels from air (n=1) into glass (n=1.5) and then into gelatin. The incident ray makes a 58.0o angle with the normal in the air before it enters the glass and a 36.4o angle with the normal after it enters the gelatin.
In a neat and organized fashion, write out a solution which includes the following:
A sketch of the physical situation with all given physical quantities clearly labeled.
Draw a ray diagram showing all reflected and refracted rays in this situation and all angles clearly labeled.
Determine (a) the angle the refracted ray makes with the normal in the glass and (b) the index of refraction of the gelatin. Clearly show all steps, starting from generalized equations. Explain your mathematical work in words. Your explanation should cover both what you did and the thought process behind why you did that.
Evaluate your answer to determine whether it is reasonable or not. Consider all aspects of your answer (the numerical value, sign, and units) in your evaluation.…
Light rays from the Sun, which is at an angle of 30.9° above the western horizon, strike the still surface of a pond. What is the angle of incidence of the Sun’s rays on the pond? What is the angle of reflection of the rays that leave the pond surface? At what angle from the pond surface are the reflected rays traveling? In what direction are the reflected rays traveling?
Chapter 25 Solutions
College Physics
Ch. 25 - Using the law of reflection, explain how powder...Ch. 25 - Diffusion by reflection from a rough surface is...Ch. 25 - Why is the index of refraction always greater than...Ch. 25 - Does the fact that the light flash from lightning...Ch. 25 - Will light change direction toward or away from...Ch. 25 - Explain why an object in water always appears to...Ch. 25 - Explain why a person’s legs appeal very short when...Ch. 25 - Why is the front surface of a thermometer curved...Ch. 25 - Suppose light were incident from air onto a...Ch. 25 - A ring with a colorless gemstone is dropped into...
Ch. 25 - A high-quality diamond may be quite clear and...Ch. 25 - Is it possible that total internal reflection...Ch. 25 - The most common type at mirage is an illusion that...Ch. 25 - It can he argued that a flat piece of glass, such...Ch. 25 - You can often see a reflection when looking at a...Ch. 25 - When you focus a camera, you adjust the distance...Ch. 25 - A thin lens has two focal points, one on either...Ch. 25 - Will the focal length of a lens change when it is...Ch. 25 - What are the differences between teal and virtual...Ch. 25 - Can you see a virtual image? Can you photograph...Ch. 25 - Is it necessary to project a real image onto a...Ch. 25 - At what distance is an image always locatedat do,...Ch. 25 - Under what circumstances will an image be located...Ch. 25 - What is meant by a negative magnification? What is...Ch. 25 - Can a case 1 image be larger than the object even...Ch. 25 - Figure 25.49 shows a light bulb between two...Ch. 25 - Devise an arrangement of mirrors allowing you to...Ch. 25 - If you wish to see your entire body in a flat...Ch. 25 - It can be argued than a flat mirror has an in?nite...Ch. 25 - Why are diverging mirrors often used for rear-view...Ch. 25 - Suppose a man stands in front of a mirror as shown...Ch. 25 - Show that when light reflects from two mirrors...Ch. 25 - Light shows staged with lasers use moving mirrors...Ch. 25 - A flat minor is neither converging nor diverging....Ch. 25 - What is the speed of light in water? In glycerine?Ch. 25 - What is the speed of light in air? In crown glass?Ch. 25 - Calculate the index of refraction for a medium in...Ch. 25 - In what substance in Table 25.1 is the speed of...Ch. 25 - There was a major collision of an asteroid with...Ch. 25 - A scuba diver training in a pool looks at his...Ch. 25 - Components of some computers communicate with each...Ch. 25 - (a) Using information in Figure 25.53, find the...Ch. 25 - Suppose you have an unknown clear substance...Ch. 25 - On the Moon’s surface, lunar astronauts placed a...Ch. 25 - Suppose Figure 25.54 represents a ray of light...Ch. 25 - Figure 25.54 shows a ray of light passing from one...Ch. 25 - Unreasonable Results Suppose light travels from...Ch. 25 - Construct Your Own Problem Consider sunlight...Ch. 25 - Unreasonable Results Light traveling from water to...Ch. 25 - Verify that the critical angle for light going...Ch. 25 - (a) At the end of Example 25.4, it was stated that...Ch. 25 - An optical fiber uses flint glass clad with crown...Ch. 25 - At what minimum angle will you get total internal...Ch. 25 - Suppose you are using total internal reflection to...Ch. 25 - You can determine me index of refraction of a...Ch. 25 - A ray of light, emitted beneath the surface of an...Ch. 25 - A light ray entering an optical fiber surrounded...Ch. 25 - (a) What is me ratio of the speed of red light to...Ch. 25 - A beam of white light goes from air into water at...Ch. 25 - By how much do the critical angles for red (660...Ch. 25 - (a) A narrow beam of light containing yellow (580...Ch. 25 - A parallel beam of light containing orange (610...Ch. 25 - A ray of 610 nm light goes from air into fused...Ch. 25 - A narrow beam of light containing red (660 nm) and...Ch. 25 - A narrow beam of white light enters a prism made...Ch. 25 - What is the power in diopters at a camera lens...Ch. 25 - Your camera's zoom lens has an adjustable focal...Ch. 25 - What is the focal length of 1.75 D reading glasses...Ch. 25 - You note that your prescription for new eyeglasses...Ch. 25 - How far from the lens must the film in a camera...Ch. 25 - A certain slide projector has a 100 mm focal...Ch. 25 - A doctor examines a mole with a 15.0 cm focal...Ch. 25 - How far from a piece of paper must you hold your...Ch. 25 - A camera with a 50.0 mm focal length lens is being...Ch. 25 - A camera lens used for taking close-up photographs...Ch. 25 - Suppose your 50.00 mm local length camera lens is...Ch. 25 - (a) What is the focal length of a magnifying glass...Ch. 25 - What magnification will be produced by a lens of...Ch. 25 - In Example 25.7, the magnification of a book held...Ch. 25 - Suppose a 200 mm focal length telephoto lens is...Ch. 25 - A camera with a 100 mm focal length lens is used...Ch. 25 - Combine thin lens equations to show that the...Ch. 25 - What is the focal length of a makeup mirror that...Ch. 25 - Some telephoto cameras use a mirror rather than a...Ch. 25 - (a) Calculate the focal length of the mirror...Ch. 25 - Find the magnification of the heater element in...Ch. 25 - What is the focal length of a makeup mirror that...Ch. 25 - A shopper standing 3.00 m from a convex security...Ch. 25 - An object 1.50 cm high is held 3.00 cm from a...Ch. 25 - Ray tracing for a flat mirror shows that the image...Ch. 25 - Show that for a flat mirror hi= ho, knowing that...Ch. 25 - Use the law of reflection to prove that the focal...Ch. 25 - Referring to the electric room heater considered...Ch. 25 - Consider a 250-W heat lamp fixed to the ceiling in...
Additional Science Textbook Solutions
Find more solutions based on key concepts
TEST YOUR UNDERSTANDING OF SECTION 37.1 As a high-speed spaceship flies past you, it fires a strobe light that ...
University Physics with Modern Physics (14th Edition)
15. (II) The gauge pressure in each of the four tires of an automobile is 240 kPa. If each tire has a “footprin...
Physics: Principles with Applications
The electromagnetic spectrum of light is often arranged in terms of frequency. Which one of the following has t...
Lecture- Tutorials for Introductory Astronomy
21. Two -diameter aluminum electrodes are spaced apart.
The electrodes are connected to a battery.
...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
1. a. Can a vector have nonzero magnitude if a component is zero? If no, why not? If yes, give an example.
b. C...
College Physics: A Strategic Approach (4th Edition)
1. A cyclist goes around a level, circular track at constant speed. Do you agree or disagree with the following...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Light passes from a material with index of refraction 1.3 into one with index of refraction 1.2. Compared with the incident ray, what happens to the refracted ray? (a) It bends toward the normal. (b) It is undeflected. (c) It bends away from the normal.arrow_forwardA man shines a flashlight from a boat into the water, illuminating a rock as in Figure P22.21. What is the angle of incidence 1?arrow_forwardA laser beam is pointed at the surface of a block of fluorite at an angle of 30.0° with respect to the normal (a line perpendicular to the surface at the spot where the ray hits the block). Part of the light is reflected and the rest refracted. What is the angle (in degrees) between the reflected and refracted beams? Need Help? Read Itarrow_forward
- A beam of light passes from glass with refractive index 1.58 into water with a refractive index 1.33. The angle of the refracted ray in water is 58.0o . a) Draw a sketch of the situation showing the interface between the media, the normal line, the incident ray, the reflected ray, the refracted ray, and the angles of these rays relative to the normal line. b) Calculate the angle of incidence in the glass. Explainarrow_forwardYou want to determine the index of refraction for a material by passing a laser through it and then measuring the refracted angle on the opposite side of the material. Your laser beam originates in air with an index of refraction of 1. The incident angle from air is 62 degrees and the refracted angle in the unknown material is 41 degrees. a) What is the index of refraction for your unknown material? 1.34 b) If you then submerge the unknown material in water with an index of refraction of 1.33, what would be the critical angle for a beam that originates in the material and cannot escape into the water? Xarrow_forwardA beam of light, traveling in air, strikes a plate of transparent material at an angle of incidence of 56.0°. It is observed that the reflected and refracted beams form an angle of 90.0°. What is the index of refraction of this material? Jhy O 1.48 O 1.43 1.44 O 1.40arrow_forward
- A ray of light in the air hits a block of transparent material at an incident angle 0f 62°. The angle of refraction is 44°. a) Sketch the situation, labelling the incident ray, the refracted ray, the reflected ray, and the normal. b) Determine the index of refraction of the transparent block and the speed of light in the block.arrow_forwardProblem 85. A light ray is incident upon a transparent parallel plate of index of refraction 1.52 at an angle of 40° as shown below. A) Sketch the path of the ray through the plate and exiting the plate. B) Find the angle of refraction in the plate at the entry into the plate. C) Find the angle of refraction in the air at the exit from the plate. Air Plate Air 40 1arrow_forwardEdward and Calil do some experiments to determine the speed of light in a special transparent material. They determine the speed of light to be 0.63c. Edward shines a light thru the material. Determine the critical angle in degrees for the light ray if there is a chamber of air above the material. Please give your answer as a whole number. (c is the speed of light in vacuum)arrow_forward
- A point source of light is below the surface of H20. The index of refraction of H20 is 1.33. A light ray that emrges from the source of light strikes the H2O - air interface at an angle of 37 to the normal. What statement best describe what the light ray does after striking interface? a/ Incident ray will inter fully destructively with the refrected ray, producing total internal refelction. b/ Incident ray will bounce back on the intrface and travel along the same path but in the opposite direction c/ The path of light will be reflected back into the H2O, and part will be transmitted into the air d/ All the light will be reflected back into the H2O e/ The incident ray will interfere fully destructively with the transmitted ray, producing total internal reflection. f/ The incident ray will interfere fully destructively with both reflected and transmitted rays producings total internal refelction g/ all light transmitted to airarrow_forwardIn the figure shown, a light ray travelling through air (n=1.0) strikes the surface of an unknown material. The soeed of light in this unknown material is only 1.2E8 m)s, and the angke marked (alpha) in the figure is 30 degrees. A) What is the index of refraction of the unknown material? B) What is the angle marked (Beta) in the figure? 2) Draw a history graph for the position x= -2m for the same wave pulse shown in the diagram figure above. Show some mathematical proofsarrow_forwardA ray of light travels through air until it strikes the interface between the air and another medium. The incident ray makes an angle of ?1 = 41.0° with the normal, as shown in the figure below. Upon passage into the second medium, the ray is refracted, emerging from the interface at an angle ?2 with respect to the normal. A light ray in air is moving down and to the right and is incident on a second medium. It makes an angle ?1 with the vertical. Inside the vertical, it continues to move down and to the right but at a steeper slope than the incident ray. It makes an angle ?2 with the vertical. (a) Suppose that the second medium is flint glass. What is the angle of refraction, ?2 (in degrees)? (Enter your answer to at least one decimal place.) Answer in degrees° (b) Suppose that the second medium is crown glass. What is the angle of refraction, ?2, in this case (in degrees)? (Enter your answer to at least one decimal place.) Answer in degrees ° (c) Finally, suppose that…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY