Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 25, Problem 25.43P
Consider a ring of radius R with the total charge Q spread uniformly over its perimeter. What is the potential difference between the point at the center of the ring and a point on its axis a distance 2R from the center?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A solid conducting sphere of radius ra is placed concentrically inside a conducting spherical shell of inner radius rb1 and outer radius rb2. The inner sphere carries a charge Q while the outer sphere does not carry any net charge. The potential for rb1 < r < rb2 is
We have a circular disk of radius R with charge per unit area σ. What amount of work is required to carry a particle of charge q from a point on the axis of the disk a distance z from its plane a: another point on the axis at a distance z from the other side of the disk. the center of the disk.
Your answer is partially correct. Try again.
A charge of -8.5 nC is uniformly distributed around a thin plastic ring lying in a yz plane with the ring center at the origin. A -5.0 pC point charge is located on the x
axis at x = 3.8 m. For a ring radius of 1.2 m, how much work must an external force do on the point charge to move it to the origin?
Number
0.00000008728
Units
the tolerance is +/-5%
Chapter 25 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 25 - In Figure 24.1, two points and are located...Ch. 25 - The labeled points in Figure 24.4 are on a series...Ch. 25 - In Figure 24.8b, take q2, to be a negative source...Ch. 25 - In a certain region of space, the electric...Ch. 25 - In a certain region of space, the electric field...Ch. 25 - Consider the equipotential surfaces shown in...Ch. 25 - (i) A metallic sphere A of radius 1.00 cm is...Ch. 25 - The electric potential at x = 3.00 m is 120 V, and...Ch. 25 - Rank the potential energies of the lour systems of...Ch. 25 - In a certain region of space, a uniform electric...
Ch. 25 - Rank the electric potentials at the four points...Ch. 25 - An electron in an x-ray machine is accelerated...Ch. 25 - Rank the electric potential energies of the...Ch. 25 - Four particles are positioned on the rim of a...Ch. 25 - A proton is released from rest at the origin in a...Ch. 25 - A particle with charge -40.0 nC is on the x axis...Ch. 25 - A filament running along the x axis from the...Ch. 25 - In different experimental trials, an electron, a...Ch. 25 - A helium nucleus (charge = 2e. mass = 6.63 ...Ch. 25 - What determines the maximum electric potential to...Ch. 25 - Describe the motion of a proton (a) after it is...Ch. 25 - When charged particles are separated by an...Ch. 25 - Study Figure 23.3 and the accompanying text...Ch. 25 - Distinguish between electric potential and...Ch. 25 - Describe the equipotential surfaces for (a) an...Ch. 25 - Oppositely charged parallel plates are separated...Ch. 25 - A uniform electric field of magnitude 250 V/m is...Ch. 25 - (a) Calculate the speed of a proton that is...Ch. 25 - How much work is done (by a battery, generator, or...Ch. 25 - A uniform electric field of magnitude 325 V/m is...Ch. 25 - Starting with the definition of work, prove that...Ch. 25 - An electron moving parallel to the x axis has an...Ch. 25 - (a) Find the electric potential difference Ve...Ch. 25 - A particle having charge q = +2.00 C and mass m =...Ch. 25 - Review. A block having mass m and charge + Q is...Ch. 25 - An insulating rod having linear charge density =...Ch. 25 - (a) Calculate the electric potential 0.250 cm from...Ch. 25 - Two point charges are on the y axis. A 4.50-C...Ch. 25 - The two charges in Figure P25.14 are separated by...Ch. 25 - Three positive charges are located at the corners...Ch. 25 - Two point charges Q1 = +5.00 nC and Q2 = 3.00 nC...Ch. 25 - Two particles, with charges of 20.0 11C and -20.0...Ch. 25 - The two charges in Figure P24.12 are separated by...Ch. 25 - Given two particles with 2.00-C charges as shown...Ch. 25 - At a certain distance from a charged particle, the...Ch. 25 - Four point charges each having charge Q are...Ch. 25 - The three charged particles in Figure P25.22 are...Ch. 25 - A particle with charge +q is at the origin. A...Ch. 25 - Show that the amount of work required to assemble...Ch. 25 - Two particles each with charge +2.00 C are located...Ch. 25 - Two charged particles of equal magnitude are...Ch. 25 - Four identical charged particles (q = +10.0 C) are...Ch. 25 - Three particles with equal positive charges q are...Ch. 25 - Five particles with equal negative charges q are...Ch. 25 - Review. A light, unstressed spring has length d....Ch. 25 - Review. Two insulating spheres have radii 0.300 cm...Ch. 25 - Review. Two insulating spheres have radii r1 and...Ch. 25 - How much work is required to assemble eight...Ch. 25 - Four identical particles, each having charge q and...Ch. 25 - In 1911, Ernest Rutherford and his assistants...Ch. 25 - Figure P24.22 represents a graph of the electric...Ch. 25 - The potential in a region between x = 0 and x =...Ch. 25 - An electric field in a region of space is parallel...Ch. 25 - Over a certain region of space, the electric...Ch. 25 - Figure P24.23 shows several equipotential lines,...Ch. 25 - The electric potential inside a charged spherical...Ch. 25 - It is shown in Example 24.7 that the potential at...Ch. 25 - Consider a ring of radius R with the total charge...Ch. 25 - A uniformly charged insulating rod of length 14.0...Ch. 25 - A rod of length L (Fig. P24.25) lies along the x...Ch. 25 - For the arrangement described in Problem 25,...Ch. 25 - A wire having a uniform linear charge density is...Ch. 25 - The electric field magnitude on the surface of an...Ch. 25 - How many electrons should be removed from an...Ch. 25 - A spherical conductor has a radius of 14.0 cm and...Ch. 25 - Electric charge can accumulate on an airplane in...Ch. 25 - Lightning can be studied with a Van de Graaff...Ch. 25 - Why is the following situation impossible? In the...Ch. 25 - Review. In fair weather, the electric field in the...Ch. 25 - Review. From a large distance away, a particle of...Ch. 25 - Review. From a large distance away, a particle of...Ch. 25 - The liquid-drop model of the atomic nucleus...Ch. 25 - On a dry winter day, you scuff your leather-soled...Ch. 25 - The electric potential immediately outside a...Ch. 25 - (a) Use the exact result from Example 24.4 to find...Ch. 25 - Calculate the work that must be done on charges...Ch. 25 - Calculate the work that must be done on charges...Ch. 25 - The electric potential everywhere on the xy plane...Ch. 25 - Why is the following situation impossible? You set...Ch. 25 - From Gauss's law, the electric field set up by a...Ch. 25 - A uniformly charged filament lies along the x axis...Ch. 25 - The thin, uniformly charged rod shown in Figure...Ch. 25 - A GeigerMueller tube is a radiation detector that...Ch. 25 - Review. Two parallel plates having charges of...Ch. 25 - When an uncharged conducting sphere of radius a is...Ch. 25 - An electric dipole is located along the y axis as...Ch. 25 - A solid sphere of radius R has a uniform charge...Ch. 25 - A disk of radius R (Fig. P24.49) has a nonuniform...Ch. 25 - Four balls, each with mass m, are connected by...Ch. 25 - (a) A uniformly charged cylindrical shell with no...Ch. 25 - As shown in Figure P25.76, two large, parallel,...Ch. 25 - A particle with charge q is located at x = R, and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A particle with charge q on the negative x axis and a second particle with charge 2q on the positive x axis are each a distance d from the origin. Where should a third particle with charge 3q be placed so that the magnitude of the electric field at the origin is zero?arrow_forwardA point charge of q=50108 C is placed at the center of an uncharged spherical conducting shell of inner radius 6.0 cm and outer radius 9.0 cm. Find the electric potential at (a) r = 4,0cm, (b) r = 8.0 cm, (c) r — 12.0 cm.arrow_forwardFour charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = +2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy?arrow_forward
- Four charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = 2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy as their separations become infinite? FIGURE P26.14 Problems 14, 15, and 16.arrow_forwardFrom Gauss's law, the electric field set up by a uniform line of charge is E=(20r)r where r is a unit vector pointing radially away from the line and is the linear charge density along the line. Derive an expression for the potential difference between r = r1, and r = r2.arrow_forwardA CD disk of radius (R = 3.0 cm) is sprayed with a charged paint so that the charge varies continually with radial distance r from the center in the following manner =(6.0C/m)r/R ?. Find the potential at a point 4 cm above the center.arrow_forward
- How many electrons should be removed from an initially uncharged spherical conductor of radius 0.300 m to produce a potential of 7.50 kV at the surface?arrow_forward(a) A uniformly charged cylindrical shell with no end caps has total charge Q, radius R, and length h. Determine the electric potential at a point a distance d from the right end of the cylinder as shown in Figure P24.51. Suggestion: Use the result of Example 24.5 by treating the cylinder as a collection of ring charges. (b) What If? Use the result of Example 24.6 to solve the same problem for a solid cylinder. Figure P24.51arrow_forwardProblems 72, 73, and 74 are grouped. 72. A Figure P26.72 shows a source consisting of two identical parallel disks of radius R. The x axis runs through the center of each disk. Each disk carries an excess charge uniformly distributed on its surface. The disk on the left has a total positive charge Q, and the disk on the right has a total negative charge Q. The distance between the disks is 3R, and point A is 2R from the positively charged disk. Find an expression for the electric potential at point A between the disks on the x axis. Approximate any square roots to three significant figures. FIGURE P26.72 Problems 72, 73, and 74.arrow_forward
- A proton is fired from very far away directly at a fixed particle with charge q = 1.28 1018 C. If the initial speed of the proton is 2.4 105 m/s, what is its distance of closest approach to the fixed particle? The mass of a proton is 1.67 1027 kg.arrow_forwardFrom a distance of 10 cm, a proton is projected with a speed of v=4.0106 m/s directly at a large, positively charged plate whose charge density is =2.0105 C/m2. (See below.) (a) Does the proton reach the plate? (b) If not, how far from the plate does it turn around?arrow_forwardFour balls, each with mass m, are connected by four nonconducting strings to form a square with side a as shown in Figure P25.74. The assembly is placed on a nonconducting. frictionless. horizontal surface. Balls 1 and 2 each have charge q, and balls 3 and 4 are uncharged. After the string connecting halls 1 and 2 is cut, what is the maximum speed of balls 3 and 4?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY