A Geiger-Mueller tube is a radiation detector that consists of a closed, hollow, metal cylinder (the cathode) of inner radius ra and a coaxial cylindrical wire (the anode) of radius rb (see figure below) with a gas filling the space between the electrodes. Assume that the internal diameter of a Geiger-Mueller tube is 1.95 cm and that the wire along the axis has a diameter of 0.210 mm. The dielectric strength of the gas between the central wire and the cylinder is 1.30 106 V/m. Use the equation 2?rℓE =qin/?0 to calculate the maximum potential difference that can be applied between the wire and the cylinder before breakdown occurs in the gas. [Image] A cross-section of a Geiger-Mueller tube shows an inner anode of radius rb and charge density ? and an outer cathode of radius ra and charge density −?.
Dielectric Constant Of Water
Water constitutes about 70% of earth. Some important distinguishing properties of water are high molar concentration, small dissociation constant and high dielectric constant.
Electrostatic Potential and Capacitance
An electrostatic force is a force caused by stationary electric charges /fields. The electrostatic force is caused by the transfer of electrons in conducting materials. Coulomb’s law determines the amount of force between two stationary, charged particles. The electric force is the force which acts between two stationary charges. It is also called Coulomb force.
A Geiger-Mueller tube is a
[Image]
A cross-section of a Geiger-Mueller tube shows an inner anode of radius rb and charge density ? and an outer cathode of radius ra and charge density −?.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps