A negatively charged particle of mass 4.30 x 1o-19 kg is moving with a speed of 35.0 m/s when it enters the region between two parallel capacitor plates. The initial velocity of the charge is parallel to the plate surfaces and in the positive x-direction. The plates are square with a side of 1.00 cm, and the voltage across the plates is 2.50 V. If the particle is initially 1.00 mm from both plates and it just barely clears the positive plate after traveling 1.00 cm through the region between the plates, how many excess electrons are on the particle? Ignore gravitational and edge effects. 35.0 m/s [2.00 mm 1.00 cm Numeric Response

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
A negatively charged particle of mass \(4.30 \times 10^{-19}\) kg is moving with a speed of 35.0 m/s when it enters the region between two parallel capacitor plates. The initial velocity of the charge is parallel to the plate surfaces and in the positive x-direction. The plates are square with a side of 1.00 cm, and the voltage across the plates is 2.50 V. If the particle is initially 1.00 mm from both plates and it just barely clears the positive plate after traveling 1.00 cm through the region between the plates, how many excess electrons are on the particle? Ignore gravitational and edge effects.

**Diagram Explanation:**

The diagram shows two parallel plates, each labeled with a length of 1.00 cm and separated by a distance of 2.00 mm. A particle with a velocity of 35.0 m/s is moving in the positive x-direction, starting 1.00 mm away from both plates. 

There is a section for a numeric response, where the calculated number of excess electrons is to be entered.
Transcribed Image Text:A negatively charged particle of mass \(4.30 \times 10^{-19}\) kg is moving with a speed of 35.0 m/s when it enters the region between two parallel capacitor plates. The initial velocity of the charge is parallel to the plate surfaces and in the positive x-direction. The plates are square with a side of 1.00 cm, and the voltage across the plates is 2.50 V. If the particle is initially 1.00 mm from both plates and it just barely clears the positive plate after traveling 1.00 cm through the region between the plates, how many excess electrons are on the particle? Ignore gravitational and edge effects. **Diagram Explanation:** The diagram shows two parallel plates, each labeled with a length of 1.00 cm and separated by a distance of 2.00 mm. A particle with a velocity of 35.0 m/s is moving in the positive x-direction, starting 1.00 mm away from both plates. There is a section for a numeric response, where the calculated number of excess electrons is to be entered.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON