![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_largeCoverImage.gif)
Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 51CP
(a) A uniformly charged cylindrical shell with no end caps has total charge Q, radius R, and length h. Determine the electric potential at a point a distance d from the right end of the cylinder as shown in Figure P24.51. Suggestion: Use the result of Example 24.5 by treating the cylinder as a collection of ring charges. (b) What If? Use the result of Example 24.6 to solve the same problem for a solid cylinder.
Figure P24.51
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Trending nowThis is a popular solution!
![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
12. What could we conclude if a system has a phase trajectory that sweeps out larger and larger area as time goes by?
need help part d
A cab driver heads south with a steady speed of v₁ = 20.0 m/s for t₁ = 3.00 min, then makes a right turn and travels at v₂ = 25.0 m/s for t₂ = 2.80 min, and then drives northwest at v3 = 30.0 m/s for t3 = 1.00 min. For this 6.80-min trip, calculate the following.
Assume +x is in the eastward direction.
(a) total vector displacement (Enter the magnitude in m and the direction in degrees south of west.)
magnitude
direction
For each straight-line movement, model the car as a particle under constant velocity, and draw a diagram of the displacements, labeling the distances and angles. Let the starting point be the origin of your coordinate system. Use the relationship
speed = distance/time to find the distances traveled during each segment. Write the displacement vector, and calculate its magnitude and direction. Don't forget to convert min to s! m
Model the car as a particle under constant velocity, and draw a diagram of the displacements, labeling the distances and angles. Let the…
Chapter 24 Solutions
Physics for Scientists and Engineers
Ch. 24.1 - In Figure 24.1, two points and are located...Ch. 24.2 - The labeled points in Figure 24.4 are on a series...Ch. 24.3 - In Figure 24.8b, take q2, to be a negative source...Ch. 24.4 - In a certain region of space, the electric...Ch. 24 - How much work is done (by a battery, generator, or...Ch. 24 - (a) Find the electric potential difference Ve...Ch. 24 - Oppositely charged parallel plates are separated...Ch. 24 - Starting with the definition of work, prove that...Ch. 24 - An insulating rod having linear charge density =...Ch. 24 - Review. A block having mass m and charge + Q is...
Ch. 24 - Three positive charges are located at the corners...Ch. 24 - Two point charges Q1 = +5.00 nC and Q2 = 3.00 nC...Ch. 24 - You are working on a laboratory device that...Ch. 24 - Your roommate is having trouble understanding why...Ch. 24 - Four point charges each having charge Q are...Ch. 24 - The two charges in Figure P24.12 are separated by...Ch. 24 - Show that the amount of work required to assemble...Ch. 24 - Two charged particles of equal magnitude are...Ch. 24 - Three particles with equal positive charges q are...Ch. 24 - Review. A light, unstressed spring has length d....Ch. 24 - Review. Two insulating spheres have radii 0.300 cm...Ch. 24 - Review. Two insulating spheres have radii r1 and...Ch. 24 - How much work is required to assemble eight...Ch. 24 - Four identical particles, each having charge q and...Ch. 24 - It is shown in Example 24.7 that the potential at...Ch. 24 - Figure P24.22 represents a graph of the electric...Ch. 24 - Figure P24.23 shows several equipotential lines,...Ch. 24 - An electric field in a region of space is parallel...Ch. 24 - A rod of length L (Fig. P24.25) lies along the x...Ch. 24 - For the arrangement described in Problem 25,...Ch. 24 - A wire having a uniform linear charge density is...Ch. 24 - You are a coach for the Physics Olympics team...Ch. 24 - The electric field magnitude on the surface of an...Ch. 24 - Why is the following situation impossible? A solid...Ch. 24 - A solid metallic sphere of radius a carries total...Ch. 24 - A positively charged panicle is at a distance R/2...Ch. 24 - A very large, thin, flat plate of aluminum of area...Ch. 24 - A solid conducting sphere of radius 2.00 cm has a...Ch. 24 - A spherical conductor has a radius of 14.0 cm and...Ch. 24 - A long, straight wire is surrounded by a hollow...Ch. 24 - Why is the following situation impossible? In the...Ch. 24 - On a dry winter day, you scuff your leather-soled...Ch. 24 - (a) Use the exact result from Example 24.4 to find...Ch. 24 - Why is the following situation impossible? You set...Ch. 24 - The thin, uniformly charged rod shown in Figure...Ch. 24 - A GeigerMueller tube is a radiation detector that...Ch. 24 - Review. Two parallel plates having charges of...Ch. 24 - When an uncharged conducting sphere of radius a is...Ch. 24 - A solid, insulating sphere of radius a has a...Ch. 24 - A hollow, metallic, spherical shell has exterior...Ch. 24 - For the configuration shown in Figure P24.45,...Ch. 24 - An electric dipole is located along the y axis as...Ch. 24 - A disk of radius R (Fig. P24.49) has a nonuniform...Ch. 24 - A particle with charge q is located at x = R, and...Ch. 24 - (a) A uniformly charged cylindrical shell with no...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- î A proton is projected in the positive x direction into a region of uniform electric field E = (-5.50 x 105) i N/C at t = 0. The proton travels 7.20 cm as it comes to rest. (a) Determine the acceleration of the proton. magnitude 5.27e13 direction -X m/s² (b) Determine the initial speed of the proton. 8.71e-6 magnitude The electric field is constant, so the force is constant, which means the acceleration will be constant. m/s direction +X (c) Determine the time interval over which the proton comes to rest. 1.65e-7 Review you equations for constant accelerated motion. sarrow_forwardThree charged particles are at the corners of an equilateral triangle as shown in the figure below. (Let q = 2.00 μC, and L = 0.750 m.) y 7.00 με 60.0° L 9 -4.00 μC x (a) Calculate the electric field at the position of charge q due to the 7.00-μC and -4.00-μC charges. 112 Once you calculate the magnitude of the field contribution from each charge you need to add these as vectors. KN/CI + 64 × Think carefully about the direction of the field due to the 7.00-μC charge. KN/Cĵ (b) Use your answer to part (a) to determine the force on charge q. 240.0 If you know the electric field at a particular point, how do you find the force that acts on a charge at that point? mN Î + 194.0 × If you know the electric field at a particular point, how do you find the force that acts on a charge at that point? mNarrow_forwardIn the Donkey Kong Country video games you often get around by shooting yourself out of barrel cannons. Donkey Kong wants to launch out of one barrel and land in a different one that is a distance in x of 9.28 m away. To do so he launches himself at a velocity of 22.6 m/s at an angle of 30.0°. At what height does the 2nd barrel need to be for Donkey Kong to land in it? (measure from the height of barrel 1, aka y0=0)arrow_forward
- For which value of θ is the range of a projectile fired from ground level a maximum? 90° above the horizontal 45° above the horizontal 55° above the horizontal 30° above the horizontal 60° above the horizontalarrow_forwardA map from The Legend of Zelda: The Breath of the Wild shows that Zora's Domain is 7.55 km in a direction 25.0° north of east from Gerudo Town. The same map shows that the Korok Forest is 3.13 km in a direction 55.0° west of north from Zora's Domain. The figure below shows the location of these three places. Modeling Hyrule as flat, use this information to find the displacement from Gerudo Town to Korok Forest. What is the magnitude of the displacement? Find the angle of the displacement. Measure the angle in degrees north of east of Gerudo Town.arrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.arrow_forward
- Below you will find 100 m split times for the American and France men’s 4x100 meter free style relay race during the 2008 Beijing Summer Olympics). Answer questions a-d. a) What was the total race time for each team, in seconds? b) Which team won the race? What was the difference in the teams’ times? c) What was the average speed for each team for the whole race? (provide answer to 3 decimal places). d) Calculate the average speed for each swimmer and report the results in a table like the one above. Remember to show the calculation steps. (provide answer to 3 decimal places). PLEASE SHOW ALL WORK AND STEPS.arrow_forwardNeed complete solution Pleasearrow_forwardBelow you will find 100 m split times for the American and France men’s 4x100 meter free style relay race during the 2008 Beijing Summer Olympics). Fill out the chart below. Calculate average speed per split (m/s). Show all work.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168161/9781938168161_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY