Concept explainers
You are working on a laboratory device that includes a small sphere with a large electric charge Q. Because of this charged sphere, there is a strong electric field surrounding your device. Other researchers in your laboratory are complaining that your electric field is affecting their equipment. You think about how you can obtain the large electric field that you need close to the sphere but prohibit the field from reaching your colleagues. You decide to surround your device with a spherical transparent plastic shell of radius R. The plastic has a very thin coating of
Trending nowThis is a popular solution!
Chapter 24 Solutions
Physics for Scientists and Engineers
- The infinite sheets in Figure P25.47 are both positively charged. The sheet on the left has a uniform surface charge density of 48.0 C/m2, and the one on the right has a uniform surface charge density of 24.0 C/m2. a. What are the magnitude and direction of the net electric field at points A, B, and C? b. What is the force exerted on an electron placed at points A, B, and C? FIGURE P25.47arrow_forwardA very long, thin wire fixed along the x axis has a linear charge density of 3.2 C/m. a. Determine the electric field at point P a distance of 0.50 m from the wire. b. If there is a test charge q0 = 12.0 C at point P, what is the magnitude of the net force on this charge? In which direction will the test charge accelerate?arrow_forwardTwo positively charged spheres are shown in Figure P24.70. Sphere 1 has twice as much charge as sphere 2. If q = 6.55 nC, d = 0.250 m, and y = 1.25 m, what is the electric field at point A?arrow_forward
- Figure P24.51 shows four small charged spheres arranged at the corners of a square with side d = 25.0 cm. a. What is the electric field at the location of the sphere with charge +2.00 nC? b. What is the total electric force exerted on the sphere with charge +2.00 nC by the other three spheres? FIGURE P24.51arrow_forwardA coaxial cable is formed by a long, straight wire and a hollow conducting cylinder with axes that coincide. The wire has charge per unit length = 20, and the hollow cylinder has net charge per unit length = 30. Use Gausss law to answer these questions: What are the charges per unit length on a. the inner surface and b. the outer surface of the hollow cylinder? c. What is the electric field a radial distance d from the axis of the coaxial cable?arrow_forwardTwo infinitely long, parallel lines of charge with linear charge densities 3.2 C/m and 3.2 C/m are separated by a distance of 0.50 m. What is the net electric field at points A, B, and C as shown in Figure P25.35? FIGURE P25.35arrow_forward
- A circular ring of charge with radius b has total charge q uniformly distributed around it. What is the magnitude of the electric field at the center of the ring? (a) 0 (b) keq/b2 (c) keq2/b2 (d) keq2/b (e) none of those answersarrow_forwardA solid, insulating sphere of radius a has a uniform charge density throughout its volume and a total charge Q. Concentric with this sphere is an uncharged, conducting, hollow sphere whose inner and outer radii are b and c as shown in Figure P19.75. We wish to understand completely the charges and electric fields at all locations. (a) Find the charge contained within a sphere of radius r a. (b) From this value, find the magnitude of the electric field for r a. (c) What charge is contained within a sphere of radius r when a r b? (d) From this value, find the magnitude of the electric field for r when a r b. (e) Now consider r when b r c. What is the magnitude of the electric field for this range of values of r? (f) From this value, what must be the charge on the inner surface of the hollow sphere? (g) From part (f), what must be the charge on the outer surface of the hollow sphere? (h) Consider the three spherical surfaces of radii a, b, and c. Which of these surfaces has the largest magnitude of surface charge density?arrow_forwardA When we find the electric field due to a continuous charge distribution, we imagine slicing that source up into small pieces, finding the electric field produced by the pieces, and then integrating to find the electric field. Lets see what happens if we break a finite rod up into a small number of finite particles. Figure P24.77 shows a rod of length 2 carrying a uniform charge Q modeled as two particles of charge Q/2. The particles are at the ends of the rod. Find an expression for the electric field at point A located a distance above the midpoint of the rod using each of two methods: a. modeling the rod with just two particles and b. using the exact expression E=kQy12+y2 c. Compare your results to the exact expression for the rod by finding the ratio of the approximate expression to the exact expression. FIGURE P24.77 Problems 77 and 78.arrow_forward
- (a) Find the total electric field at x = 1.00 cm in Figure 18.52(b) given that q =5.00 nC. (b) Find the total electric field at x = 11.00 cm in Figure 18.52(b). (c) If the charges are allowed to move and eventually be brought to rest by friction, what will the final charge configuration be? (That is, will there be a single charge, double charge; etc., and what will its value(s) he?)arrow_forwardA positively charged disk of radius R = 0.0366 m and total charge 56.8 C lies in the xz plane, centered on the y axis (Fig. P24.35). Also centered on the y axis is a charged ring with the same radius as the disk and a total charge of 34.1 C. The ring is a distance d = 0.0050 m above the disk. Determine the electric field at the point P on the y axis, where P is y = 0.0100 m above the origin. FIGURE P24.35 Problems 35 and 36.arrow_forwardA pyramid has a square base with an area of 4.00 m2 and a height of 3.5 m. Its walls are four isosceles triangles. The pyramid is in a uniform electric field of 655 N/C pointing downward (Fig. P25.13). What is the electric flux through the square base?arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning