Concept explainers
A uniformly charged filament lies along the x axis between x = a = 1.00 m and x = a + ℓ = 3.00 m as shown in Figure P25.66. The total charge on the filament is 1.60 nC. Calculate successive approximations for the electric potential at the origin by modeling the filament as (a) a single charged particle at x = 2.00 m, (b) two 0.800-nC charged particles at x = 1.5 m and x = 2.5 m, and (c) four 0.400-nC charged particles at x = 1.25 m, x = 1.75 m, x = 2.25 m, and x = 2.75 m. (d) Explain how the results compare with the potential given by the exact expression
(a)
The electric potential due to single charge particle.
Answer to Problem 25.66AP
The electric potential due to single charge particle is
Explanation of Solution
Given info: The total charge on the filament is
Formula to calculate the electric potential due to point change is,
Here,
Substitute
Conclusion:
Therefore, the electric potential due to single charge particle is
(b)
The electric potential due to two charged particles.
Answer to Problem 25.66AP
The electric potential due to two charged particles is
Explanation of Solution
Given info: The charge on two particles is
Formula to calculate the total electric potential tow charge particles is,
Here,
Substitute
Conclusion:
Therefore, the electric potential due to two charged particles is
(c)
The electric potential due to four charged particles.
Answer to Problem 25.66AP
The electric potential due to four charged particles is
Explanation of Solution
Given info: The charge on four particles is
Formula to calculate the total electric potential tow charge particles is,
Here,
Substitute
Conclusion:
Therefore, the electric potential due to four charged particles is
(d)
The comparison between the electric potential due to charged filament and the calculated value of electric potential in part (a), part (b) and part (c).
Answer to Problem 25.66AP
The calculated value of electric potential due to charged filament is
Explanation of Solution
The total charge on the filament is
The given expression of the electric potential is,
Here,
Substitute
The electric potential due to charged filament is
Conclusion:
Therefore, the calculated value of electric potential is
Want to see more full solutions like this?
Chapter 25 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- ་ The position of a particle is described by r = (300e 0.5t) mm and 0 = (0.3t²) rad, where t is in seconds. Part A Determine the magnitude of the particle's velocity at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer Part B ? Units Determine the magnitude of the particle's acceleration at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. a = Value A ? Unitsarrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward
- A spiral transition curve is used on railroads to connect a straight portion of the track with a curved portion. (Figure 1) Part A v = v₁ft/s 600 ft y = (106) x³ If the spiral is defined by the equation y = (106)³, where x and y are in feet, determine the magnitude of the acceleration of a train engine moving with a constant speed of v₁ = 30 ft/s when it is at point x = 600 ft. Express your answer to three significant figures and include the appropriate units. ? a = Value Unitsarrow_forwardsolve and answer the problem correctly please. Thank you!!arrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward
- Solve and answer the question correctly please. Thank you!!arrow_forwardWhen the motorcyclist is at A, he increases his speed along the vertical circular path at the rate of = (0.3t) ft/s², where t is in seconds. Take p = 360 ft. (Figure 1) Part A 60° Ρ B If he starts from rest at A, determine the magnitude of his velocity when he reaches B. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer ་ Part B ? Units If he starts from rest at A, determine the magnitude of his acceleration when he reaches B. Express your answer to three significant figures and include the appropriate units. 11 ? a = Value Unitsarrow_forwardThe car starts from rest at s = 0 and increases its speed at a₁ = 7 m/s². (Figure 1) Part A = 40 m Determine the time when the magnitude of acceleration becomes 20 m/s². Express your answer to three significant figures and include the appropriate units. ? t = Value Units Part B At what position s does this occur? Express your answer to three significant figures and include the appropriate units. s = Value Submit Request Answer ? Unitsarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning