![Physics for Scientists and Engineers, Technology Update (No access codes included)](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_largeCoverImage.gif)
Concept explainers
Review. From a large distance away, a particle of mass 2.00 g and charge 15.0 μC is fired at 21.0î m/s straight toward a second particle, originally stationary but free to move, with mass 5.00 g and charge 8.50 μC. Both particles are constrained to move only along the x axis.
- (a) At the instant of' closest approach, both particles will be moving at the same velocity. F'ind this velocity.
- (b) Find the distance of closest approach. After the interaction, the particles will move far apart again. At this time, find the velocity of (c) the 2.00-g particle and (d) the 5.00-g particle.
(a)
![Check Mark](/static/check-mark.png)
The velocity at the instant when the both particle moves with same velocity.
Answer to Problem 25.55AP
The velocity at the instant of closest approach when the both particle moves with same velocity is
Explanation of Solution
Given info: The mass of first particle is
The momentum is conserved of an isolated system.
Here,
Substitute
Substitute
Conclusion:
Therefore, the velocity at the instant of closest approach when the both particle moves with same velocity is
(b)
![Check Mark](/static/check-mark.png)
The closet distance.
Answer to Problem 25.55AP
The closet distance is
Explanation of Solution
Given info: The mass of first particle is
From part (a) the value of
Write the expression for initial the kinetic energy of first particle.
Here,
Write the expression for final the kinetic energy of first particle.
Here,
Write the expression for initial the kinetic energy of second particle.
Here,
Write the expression for final the kinetic energy of second particle.
Here,
Total initial kinetic energy is given by,
Substitute
Substitute
Total final kinetic energy is given by,
Substitute
The initial electric potential energy is
Here,
The final electric potential energy is expressed as,
Here,
The energy is conserved within the isolated system.
Substitute
Substitute
Substitute
Conclusion:
Therefore, the closet distance is
(c)
![Check Mark](/static/check-mark.png)
The velocity of the particle of mass
Answer to Problem 25.55AP
The velocity of the particle of mass
Explanation of Solution
Given info: The mass of first particle is
The expression for the relative velocity is,
Substitute
The overall elastic collision is described by the conservation of the momentum.
Substitute
Substitute
Substitute
Conclusion:
Therefore, the velocity of the particle of mass
(d)
![Check Mark](/static/check-mark.png)
The velocity of the particle of mass
Answer to Problem 25.55AP
The velocity of the particle of mass
Explanation of Solution
From part (c) the value of
From part (c) the expression for
Substitute
Substitute
Conclusion:
Therefore, the velocity of the particle of mass
Want to see more full solutions like this?
Chapter 25 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- help me with the experimental set up for the excel i did. the grapharrow_forwardWhich of the following best describes how to calculate the average acceleration of any object? Average acceleration is always halfway between the initial acceleration of an object and its final acceleration. Average acceleration is always equal to the change in velocity of an object divided by the time interval. Average acceleration is always equal to the displacement of an object divided by the time interval. Average acceleration is always equal to the change in speed of an object divided by the time interval.arrow_forwardThe figure shows the velocity versus time graph for a car driving on a straight road. Which of the following best describes the acceleration of the car? v (m/s) t(s) The acceleration of the car is negative and decreasing. The acceleration of the car is constant. The acceleration of the car is positive and increasing. The acceleration of the car is positive and decreasing. The acceleration of the car is negative and increasing.arrow_forward
- Which figure could represent the velocity versus time graph of a motorcycle whose speed is increasing? v (m/s) v (m/s) t(s) t(s)arrow_forwardUnlike speed, velocity is a the statement? Poisition. Direction. Vector. Scalar. quantity. Which one of the following completesarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward
- 3.63 • Leaping the River II. A physics professor did daredevil stunts in his spare time. His last stunt was an attempt to jump across a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at 53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower than the top of the ramp. The river itself was 100 m below the ramp. Ignore air resistance. (a) What should his speed have been at the top of the ramp to have just made it to the edge of the far bank? (b) If his speed was only half the value found in part (a), where did he land? Figure P3.63 53.0° 100 m 40.0 m→ 15.0 marrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forwardYou throw a small rock straight up from the edge of a highway bridge that crosses a river. The rock passes you on its way down, 5.00 s after it was thrown. What is the speed of the rock just before it reaches the water 25.0 m below the point where the rock left your hand? Ignore air resistance.arrow_forward
- Help me make a visualize experimental setup using a word document. For the theory below.arrow_forwardHow to solve this, given answerarrow_forwardThree point-like charges are placed at the corners of a square as shown in the figure, 28.0 cm on each side. Find the minimum amount of work required by an external force to move the charge q1 to infinity. Let q1=-2.10 μC, q2=+2.40 μС, q3=+3.60 μC.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168161/9781938168161_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)