Concept explainers
Interpretation:
The reasons for the ability of carbon to form so many compounds areto be explained.
Concept introduction:
Carbon forms a million compounds thatare more in comparison to any other element of the periodic table. Carbon has features liketetracovalencythatinvolvesformation of four covalent bonds and the property of catenation through sigma as well as pi bonds.

Answer to Problem 1QP
Solution: The ability of carbon to form many compounds is due to its two properties. Tetraco-valency, the first property, means formation of four covalent bonds in different directions. Catenation, the second property, means self-linking property in which single (sigma) as well as multiple (pi) bonds can be formed betweentwo carbon atoms.
Explanation of Solution
The reasons for formation of so many compounds by carbon are as follows:
Carbon can form four covalent bonds because it has electronicconfiguration
Carbon has a small atomic radius thatprovides the possibility of forming bonds with another carbon atom. The bonds can be single (sigma bond) or multiple (pi) bonds. Carbon can undergo hybridizations like
The ability of a carbon atom to form so many compounds is due to tetracovalency and catenation.
Want to see more full solutions like this?
Chapter 25 Solutions
BURDGE CHEMISTRY VALUE ED (LL)
- Polymers may be composed of thousands of monomers. Draw three repeat units (trimer) of the polymer formed in this reaction. Assume there are hydrogen atoms there are hydrogen atoms on the two ends of the trimer. Ignore inorganic byproducts.arrow_forwardDraw a tetramer if this alternating copolymer pleasearrow_forwardDraw the monomers required to synthesize this condensation polymer.arrow_forward
- Draw the monomers required to synthesize this condensation polymer.arrow_forward8:44 PM Sun Apr 13 Earn Freecash.com O Measurement and Matter =1 Setting up a unit conversion 110 Eddie says... ✰ www-awu.aleks.com A student sets up the following equation to convert a measurement. (The ? stands for a number the student is going to calculate.) Fill in the missing part of this equation. Note: your answer should be in the form of one or more fractions multiplied together. (- 4 J kJ -7.0 × 10 ☐ = ? mmol.°C mol °C x10 μ Explanation Check □·□ torox.io Grey Hill LLC. All Rightsarrow_forwardPolymers may be composed of thousands of monomers. Draw three repeat units (trimer) of the polymer formed in this reaction. Assume there are hydrogen atoms there are hydrogen atoms on the two ends of the trimer. Ignore inorganic byproducts please.arrow_forward
- i need help on how to complete the followingarrow_forwardno AI walkthrough current image is wrong answerarrow_forwarda. Determine whether each of the Followery Molecules is in the R- On the y- Configuration 1-01"/ 1-6-4 Br 4 I el Br b. Draw The Fisher projection For all the Meso compounds that can exist FOR The Following molenlearrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning




