
(a)
Interpretation:
The given set of combinations should be identified that whether they form good semiconductor.
Concept Introduction:
Semiconductors are substances that conduct electricity either by addition of an impurity or by the effects of temperature on it. Semiconductors have small energy gap between valence and conduction band hence its electrical conductivity lies between conductor and insulator.
Addition of impurity to a semiconductor is termed as doping. Doping alters the conductivity of a semiconductor. The addition of an element having either more or less number of valence electrons than the natural semiconductor decides the combination as the following two types of semiconductor.
- n- type semiconductor: (conduction is due to movement of extra electrons)
The element added will have more valence electron than the natural semiconductor. Therefore, the extra electron from the added element resides in conduction band and increase the conductivity.
Example: Silicon (natural semiconductor) and Phosphorus
- p-type semiconductor: (conduction is due to movement of holes)
The element added will have less valence electron than the natural semiconductor. Here, instead of extra electron, there will be “holes” at the places, where a semiconductor is replaced by added element. A p-type semiconductor increases conductivity because the holes (effective positive charge; lies at valence band) move through the natural semiconductor rather than electrons.
Example: Silicon (natural semiconductor) and Gallium
Whether the given combination of elements will form semiconductor or not.
(b)
Interpretation:
The given set of combinations should be identified that whether they form good semiconductor.
Concept Introduction:
Semiconductors are substances that conduct electricity either by addition of an impurity or by the effects of temperature on it. Semiconductors have small energy gap between valence and conduction band hence its electrical conductivity lies between conductor and insulator.
Addition of impurity to a semiconductor is termed as doping. Doping alters the conductivity of a semiconductor. The addition of an element having either more or less number of valence electrons than the natural semiconductor decides the combination as the following two types of semiconductor.
- n- type semiconductor: (conduction is due to movement of extra electrons)
The element added will have more valence electron than the natural semiconductor. Therefore, the extra electron from the added element resides in conduction band and increase the conductivity.
Example: Silicon (natural semiconductor) and Phosphorus
- p-type semiconductor: (conduction is due to movement of holes)
The element added will have less valence electron than the natural semiconductor. Here, instead of extra electron, there will be “holes” at the places, where a semiconductor is replaced by added element. A p-type semiconductor increases conductivity because the holes (effective positive charge; lies at valence band) move through the natural semiconductor rather than electrons.
Example: Silicon (natural semiconductor) and Gallium
To Determine: Whether the given combination of elements will form semiconductor or not.
(c)
Interpretation:
The given set of combinations should be identified that whether they form good semiconductor.
Concept Introduction:
Semiconductors are substances that conduct electricity either by addition of an impurity or by the effects of temperature on it. Semiconductors have small energy gap between valence and conduction band hence its electrical conductivity lies between conductor and insulator.
Addition of impurity to a semiconductor is termed as doping. Doping alters the conductivity of a semiconductor. The addition of an element having either more or less number of valence electrons than the natural semiconductor decides the combination as the following two types of semiconductor.
- n- type semiconductor: (conduction is due to movement of extra electrons)
The element added will have more valence electron than the natural semiconductor. Therefore, the extra electron from the added element resides in conduction band and increase the conductivity.
Example: Silicon (natural semiconductor) and Phosphorus
- p-type semiconductor: (conduction is due to movement of holes)
The element added will have less valence electron than the natural semiconductor. Here, instead of extra electron, there will be “holes” at the places, where a semiconductor is replaced by added element. A p-type semiconductor increases conductivity because the holes (effective positive charge; lies at valence band) move through the natural semiconductor rather than electrons.
Example: Silicon (natural semiconductor) and Gallium
To Determine: Whether the given combination of elements will form semiconductor or not.

Want to see the full answer?
Check out a sample textbook solution
Chapter 24 Solutions
Chemistry: Atoms First
- Show how to convert ethyl benzene to (a) 2,5-dichlorobenzoic acid and (b) 2,4-dichlorobenzoic acid.arrow_forwardHelp me solve this problem. Thank you in advance.arrow_forward22.7 Predict the monoalkylated products of the following reactions with benzene. (a) AlCl3 Ya (b) AlCl3 (c) H3PO4 (d) 22.8 Think-Pair-Share AICI3 The reaction below is a common electrophilic aromatic substitution. SO3 H₂SO4 SO₂H (a) Draw the reaction mechanism for this reaction using HSO,+ as the electrophile. (b) Sketch the reaction coordinate diagram, where the product is lower in energy than the starting reactant. (c) Which step in the reaction mechanism is highest in energy? Explain. (d) Which of the following reaction conditions could be used in an electrophilic aro- matic substitution with benzene to provide substituted phenyl derivatives? (i) AICI3 HNO3 H₂SO4 K2Cr2O7 (iii) H₂SO4 (iv) H₂PO₁arrow_forward
- Is an acid-base reaction the only type of reaction that would cause leavening products to rise?arrow_forwardHelp me understand this! Thank you in advance.arrow_forward22.22 For each compound, indicate which group on the ring is more strongly activating and then draw a structural formula of the major product formed by nitration of the compound. Br CHO (a) CH3 (b) (c) CHO CH3 SO₂H (d) ☑ OCHS NO₂ (e) (f) CO₂H NHCOCH3 NHCOCH, (h) CHS 22.23 The following molecules each contain two aromatic rings. (b) 000-100- H3C (a) (c) Which ring in each undergoes electrophilic aromatic substitution more readily? Draw the major product formed on nitration.arrow_forward
- V Consider this step in a radical reaction: Br: ? What type of step is this? Check all that apply. Draw the products of the step on the right-hand side of the drawing area below. If more than one set of products is possible, draw any set. Also, draw the mechanism arrows on the left-hand side of the drawing area to show how this happens. ⚫ionization termination initialization neutralization none of the abc Explanation Check 80 Ο F3 F1 F2 2 F4 01 % do5 $ 94 #3 X 5 C MacBook Air 25 F5 F6 66 ©2025 ˇ F7 29 & 7 8arrow_forwardShow how to convert ethyl benzene to (a) 2,5-dichlorobenzoic acid and (b) 2,4-dichlorobenzoic acid.arrow_forwardno aiarrow_forward
- Polymers may be composed of thousands of monomers. Draw three repeat units (trimer) of the polymer formed in this reaction. Assume there are hydrogen atoms there are hydrogen atoms on the two ends of the trimer. Ignore inorganic byproducts.arrow_forwardDraw a tetramer if this alternating copolymer pleasearrow_forwardDraw the monomers required to synthesize this condensation polymer.arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





