(a)
Interpretation:
Empirical formula of the given substance has to be predicted.
Concept introduction:
Steps to calculate empirical formula:
- Convert the mass of elements into moles.
- Divide each mole value by the smallest number of moles calculated.
- Round to the nearest whole number.
Number of moles = Molarity
(a)
Explanation of Solution
Calculate moles of each given elements:
This gives the formula
b)
Interpretation:
Does the substance behave as an ideal gas has to be predicted.
Concept introduction:
Ideal gas equation:
Boyle’s law: The pressure of a given mass of an ideal gas is inversely proportional to its volume at a constant temperature.
b)
Explanation of Solution
When temperature and amount of gas are constant, the product of pressure times volume is constant (Boyle’s law).
For given pressure and volume values,
If the number of moles and temperature are remains constant, then the product of pressure and volume should be same. If not then substances does not behave as an ideal gas.
As shown above none of the values are same. Hence, the substances do not behave as an ideal gas.
c)
Interpretation:
The molecular formula has to be predicted.
Concept introduction:
Steps to calculate empirical formula:
- Convert the mass of elements into moles.
- Divide each mole value by the smallest number of moles calculated.
- Round to the nearest whole number.
Number of moles = Molarity
c)
Explanation of Solution
Calculate moles of each given elements:
This gives the formula
Now, let’s calculate moles using the ideal gas equation, and then calculate the molar mass.
The formula mass of
d)
Interpretation:
Lewis structure of the molecule and its geometry has to be drawn and described.
Concept introduction:
Structural Isomerism: Structural Isomers are the structure of a molecule with same molecular formula but have different arrangements of bonds and atoms and position of double bond also changes from more substituted to less substituted or vice-versa.
Lewis structure: The bonding between atoms of a molecule and the lone pairs of electrons that may exist in the molecule.
Geometric isomers of
Cis-isomer: When two particular atoms (group of atoms) are adjacent to each other, the alkene is known as cis-isomer.
Trans-isomer: When two particular atoms (group of atoms) are across from each other, the alkene is known as trans-isomer.
d)
Explanation of Solution
Compound
The geometry of each carbon is trigonal planar. Arrangement of two identical fluorine atoms on the same side adjacent to each other known as cis-isomer. And represnted opposite side to each other known as trans-isomer.
e)
Interpretation:
The systematic name of the structure has to be written.
Concept introduction:
- The longest continuous chain of carbon atoms is identified.
- The substituent groups attached to the parent chain is identified. A substituent group contains group of atoms attached to the carbon atom of the chain.
- While numbering the longest chain, the substituent should get least possible number.
- Write the name of the compound; the parent name written as last part of the name. The name of the substituents is written as prefix and a hyphen separates the number that the substituents attached with carbon. More than one substituent should be written in alphabetical order.
Geometric isomers of Alkenes:
Cis-isomer: When two particular atoms (group of atoms) are adjacent to each other, the alkene is known as cis-isomer.
Trans-isomer: When two particular atoms (group of atoms) are across from each other, the alkene is known as trans-isomer.
e)
Explanation of Solution
Given name: cis-2-butene
Predict the longest continuous chain of carbon atoms:
The parent name is ETHENE represent the longest chain of carbon atoms contains two carbons. The Suffix ‘ene’ represents presence of double bond at C-1.
Predict substituents and its location:
The first compound structure has two fluorine atoms located at carbon-1. Hence the name can be written as substituent followed by parent name; 2,2-difluoroethene.
The second compound structure has two fluorine atoms located at carbon-1and 2. The term ‘cis-’ indicates two fluorine atoms are located adjacent to each other on same side. Hence the name can be written as substituent followed by parent name; cis-1,2-difluoroethene.
The third compound structure has two fluorine atoms located at carbon-1and 2. The term ‘trans-’ indicates two fluorine atoms are located opposite to each other. Hence the name can be written as substituent followed by parent name; trans-1,2-difluoroethene.
Want to see more full solutions like this?
Chapter 24 Solutions
Chemistry
- If the unknown compound has the formula XY4, and X is from group 16 and Y is from group 17, determine whether the compound will be polar. Briefly justify your response.arrow_forwardOf the following common organic solvents which one is predicted to have the smallest dipole moment? A Acetone, (CH3)2CO B Chloroform, CHCI3 c) Dimethylsulfoxide, (CH3)2SO Acetonitrile, CH;CNarrow_forwardPhosgene, Cl,C=0, has a smaller dipole moment than formaldehyde, H2C=O, even though it contains electronegative chlorine atoms in place of hydrogen. Explain.arrow_forward
- Which is less acidic than water?arrow_forwardWhat force exists between H2O and CH3CH2OH? Is it Ion-dipole?arrow_forwardA 0.325 g sample of a gaseous hydrocarbon (compound containing carbon and hydrogen only) occupies a volume of 193 mL at 749 mmHg and 26.1°C. Determine the molecular mass, and write a plausible Lewis structure for this hydrocarbon.arrow_forward
- Calculate the coulombic force of repulsion between nearest-neighbor O2- ions in CaO, which as the NaCl-type structure. Enter your answer in microNewtons.arrow_forwardFor the hypothetical cyclic square hydrogen molecular di-cation (H42+), list all electrostatic pairwise interactions including their signs and contributions to stabilising and de-stabilising the molecular structurearrow_forwardChloral, Cl₃C-CH=O, reacts with water to form the seda-tive and hypnotic agent chloral hydrate, Cl₃C-CH(OH)₂. DrawLewis structures for these substances, and describe the change inmolecular shape, if any, that occurs around each of the carbonatoms during the reactionarrow_forward
- Molecules can be polar because of the unsymmetrical distribution of electrons. The dipole moment, μ Q r μ=Q×r The SI unit of dipole moment is the coulomb-meter (C⋅m), but another common unit is the debye (D). The two are related as 3.336×10^−30 C⋅m=1 D The percent ionic character is a comparison of the measured dipole moment of the bond to the expected dipole moment if electrons are instead transferred: %ionic character=measured dipole/if electrons transferred×100% The dipole moment if electrons are completely transferred is one for which a full unit of charge (1.60×10^−19 C) exists on each end of the bond. The dipole measured for HI is 0.380 D. The bond distance is 161 pm. What is the percent ionic character of the HI bond? Express your answer as a percent to three significant figures. Describe the molecular dipole of OCl2.arrow_forwardIdentify These are very weak interactions caused by the momentary changes in electron density in a moleculearrow_forwardNH3, NCI3, and NF3 are all polar. Here is a data table with some additional information: Melting Point Molecular Name Boiling Point (°C) (°C) Geometry Nitrogen trihydride -77.7 -33.3 Trigonal Pyramidal (ammonia) Nitrogen trichloride -40.0 71.0 Trigonal Pyramidal Nitrogen trifluoride -207 -129 Trigonal Pyramidal Considering intermolecular forces, for what reason would nitrogen trichloride have such a high boiling point?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning