Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 23, Problem 2OQ
To determine
The factor that prevents gravity from pulling you through the ground to the center of the earth.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. The nucleus in an iron atom has a radius of about 4.0×10-15 m and contains 26 protons.
(i) What is the magnitude of the repulsive electrostatic force between two of the protons that
are separated by 4.0×10-15 m? (b) What is the magnitude of the gravitational force between
those same two protons? [Given, e = +1.6x10-19 C and mp=1.67x1027 kg]
2.5
choose the letter of the correct answer.
Assume that a room at sea level is filled with a gas of nitrogen molecules N2
in thermal equilibrium at -10.0 °C (negative ten degrees Celsius). There are 7 protons and 7
neutrons in the nucleus of a nitrogen atom N. You may take the masses of the proton and the
neutron to be the same, and ignore the mass of the electrons. 1 atm=1.01x105 N/m² ,
h=1.05x10-34 J-s , mp=1.67x10-27 kg, kB = 1.38x10-23 J/K .
a) What is the (particle) number density n according to the ideal gas law?
b) Compare the number density n with the quantum concentration ng at the same
temperature.
c) Is the gas in the classical or quantum regime?
Chapter 23 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 23.1 - Three objects are brought close to each other, two...Ch. 23.2 - Three objects are brought close to one another,...Ch. 23.3 - Object A has a charge of +2 C, and object B has a...Ch. 23.4 - A test charge of +3 C is at a point P where an...Ch. 23.6 - Rank the magnitudes of the electric field at...Ch. 23 - Prob. 1OQCh. 23 - Prob. 2OQCh. 23 - Prob. 3OQCh. 23 - Prob. 4OQCh. 23 - Prob. 5OQ
Ch. 23 - Prob. 6OQCh. 23 - Prob. 7OQCh. 23 - Prob. 8OQCh. 23 - Prob. 9OQCh. 23 - Prob. 10OQCh. 23 - Prob. 11OQCh. 23 - Prob. 12OQCh. 23 - Prob. 13OQCh. 23 - Prob. 14OQCh. 23 - Prob. 15OQCh. 23 - Prob. 1CQCh. 23 - A charged comb often attracts small bits of dry...Ch. 23 - Prob. 3CQCh. 23 - Prob. 4CQCh. 23 - Prob. 5CQCh. 23 - Prob. 6CQCh. 23 - Prob. 7CQCh. 23 - Prob. 8CQCh. 23 - Prob. 9CQCh. 23 - Prob. 10CQCh. 23 - Prob. 11CQCh. 23 - Find to three significant digits the charge and...Ch. 23 - Prob. 2PCh. 23 - Prob. 3PCh. 23 - Prob. 4PCh. 23 - In a thundercloud, there may be electric charges...Ch. 23 - (a) Find the magnitude of the electric force...Ch. 23 - Prob. 7PCh. 23 - Nobel laureate Richard Feynman (19181088) once...Ch. 23 - A 7.50-nC point charge is located 1.80 m from a...Ch. 23 - Prob. 10PCh. 23 - Prob. 11PCh. 23 - Prob. 12PCh. 23 - Prob. 13PCh. 23 - Prob. 14PCh. 23 - Prob. 15PCh. 23 - Prob. 16PCh. 23 - Review. In the Bohr theory of the hydrogen atom,...Ch. 23 - Prob. 18PCh. 23 - Prob. 19PCh. 23 - Prob. 20PCh. 23 - Prob. 21PCh. 23 - Why is the following situation impossible? Two...Ch. 23 - Prob. 23PCh. 23 - Prob. 24PCh. 23 - Prob. 25PCh. 23 - Prob. 26PCh. 23 - Prob. 27PCh. 23 - Prob. 28PCh. 23 - Prob. 29PCh. 23 - Prob. 30PCh. 23 - Prob. 31PCh. 23 - Two charged particles are located on the x axis....Ch. 23 - Prob. 33PCh. 23 - Two 2.00-C point charges are located on the x...Ch. 23 - Prob. 35PCh. 23 - Consider the electric dipole shown in Figure...Ch. 23 - A rod 14.0 cm long is uniformly charged and has a...Ch. 23 - Prob. 38PCh. 23 - A uniformly charged ring of radius 10.0 cm has a...Ch. 23 - The electric field along the axis of a uniformly...Ch. 23 - Prob. 41PCh. 23 - Prob. 42PCh. 23 - A continuous line of charge lies along the x axis,...Ch. 23 - Prob. 44PCh. 23 - Prob. 45PCh. 23 - Prob. 46PCh. 23 - A negatively charged rod of finite length carries...Ch. 23 - Prob. 48PCh. 23 - Prob. 49PCh. 23 - Prob. 50PCh. 23 - A proton accelerates from rest in a uniform...Ch. 23 - Prob. 52PCh. 23 - Prob. 53PCh. 23 - Protons are projected with an initial speed vi =...Ch. 23 - Prob. 55PCh. 23 - Prob. 56PCh. 23 - A proton moves at 4.50 105 m/s in the horizontal...Ch. 23 - Prob. 58APCh. 23 - Consider an infinite number of identical...Ch. 23 - A particle with charge 3.00 nC is at the origin,...Ch. 23 - Prob. 61APCh. 23 - Prob. 62APCh. 23 - Prob. 63APCh. 23 - Prob. 64APCh. 23 - Prob. 65APCh. 23 - Prob. 66APCh. 23 - Prob. 67APCh. 23 - Prob. 68APCh. 23 - Prob. 69APCh. 23 - Two point charges qA = 12.0 C and qB = 45.0 C and...Ch. 23 - Prob. 71APCh. 23 - Prob. 72APCh. 23 - Two small spheres hang in equilibrium at the...Ch. 23 - Prob. 74APCh. 23 - Prob. 75APCh. 23 - Prob. 76APCh. 23 - Prob. 77APCh. 23 - Prob. 78APCh. 23 - Prob. 79APCh. 23 - Prob. 80APCh. 23 - Prob. 81APCh. 23 - Prob. 82APCh. 23 - Prob. 83APCh. 23 - Identical thin rods of length 2a carry equal...Ch. 23 - Prob. 85CPCh. 23 - Prob. 86CPCh. 23 - Prob. 87CPCh. 23 - Prob. 88CPCh. 23 - Prob. 89CPCh. 23 - Prob. 90CPCh. 23 - Two particles, each with charge 52.0 nC, are...
Knowledge Booster
Similar questions
- A proton, which is the nucleus of a hydrogen atom, can be modeled as a sphere with a diameter of 2.4 fm and a mass of 1.67 10-27 kg. Determine the density of the proton (kg/m^3)arrow_forwardChoose the correct spherical polar coordinates for the following figures: = (i) r=2, 3 (ii) (i) r=2, 3 z=3 (iii) 6= 8= 3 (ii) 3.2-3 (iii) (i) r=2,- (i) 6 = 3,2-3 (iii) 0- 6= 5x 小 4 411 14 # 16 DOLL S 4支 % 5€ 4 包arrow_forwardAssume the electron in a hydrogen atom is 53.0 pm from the nucleus of the atom, which consists of a single proton. (a) calculate the electrical force between the electron and the nucleus. (b) Calculate the gravitational force between the electron and the nucleus. (c) What is the ratio of the gravitational force to the electrical force?arrow_forward
- An Erbium-166 nucleus contains 68 protons. The atomic mass of a neutral Erbium-166 atom is 165.930u, where u = 931.5 MeV/c². In this question you may use that the mass of a proton is 938.27 MeV/c², the mass of a neutron is 939.57 MeV/e² and the mass of an electron is 0.511 MeV/c². i. Calculate the nuclear binding energy per nucleon, giving your answer in units of MeV. ii. Electrons with an energy of 0.5 GeV are scattered off the nucleus. Estimate the scattering angle of the first minimum in the resulting diffraction pattern. iii. Briefly comment on whether or not you expect this nucleus to be spherical, and what consequence this has for excited states of the nucleus in the collective model.arrow_forwardConsider the element Hydrogen. In this atom, assume the electron travels with a speed of 6.8 105 m/s. What is the radius between the nucleus and the orbiting electron in m?arrow_forward17) Shown below is a structure of seven atoms with a "B" atom in the middle surrounded by "A" atoms. Nearest neighbors are separated by ro. A A A B A A A: 42 x 10-2¹ J B: 7 x 10-21 J C: 30 x 10-21 J D: 15 x 10-21 J E: 5 x 10-21 J A How much energy is required to remove only the B atom from the center, given that the well depth for an A-A pair is 2 x 10-2¹J and for a A-B pair is 5 x 10-2¹J?arrow_forward
- An electron revolves around the nucleus of an atom in a circular orbit of radius 4.0Å with a speed of 6.0 x 10^6 ms-1. Calculate the linear kinetic energy.arrow_forward2. An electron in an energy level of an atom moves in a circular path around a nucleus. The radius of the path is 1.2 x 10-11 m and the speed of the electron is 1.03 x 107 ms-1 (a) Find the centripetal acceleration of the electron. (b) Which experiences the greater force - the electron or the nucleus? (c) Find the magnitude of the force causing centripetal acceleration. (d) What is the nature of the force causing centripetal acceleration? 1.03 x67 (e) Determine the number of protons in the nucleus of the atom.arrow_forward10) Now you have a nucleus with 13 protons at x = 6.2 Angstroms on the x-axis. How much work would it take to bring in ANOTHER nucleus with 7 protons from 1 m away and place it at y = 8.0 Angstroms on the y-axis? 70.0 eV 116.7 eV -12.6 eV 129.3 eVarrow_forward
- A 212^Bi (bismuth) nucleus undergoes alpha decay, resulting in a 208^Tl (thallium) nucleus and a 4^He (helium) nucleus as per the following reaction: 212^Bi →208^ Tl + 4 ^He The masses of each nucleus is listed in the table below. Given that the bismuth atom was at rest before the reaction, if the resulting thallium nucleus is traveling 3.3 × 10^5 m/s, how fast is the helium nucleus traveling?arrow_forwardConsidering electron and proton as two charged particles separated by d = 5.9 × 10-11 m calculate the gravitational force between the proton and electron and find its ratio to the Coulomb force. Take the mass of the proton 1.7 x 10-27 kg, the mass of the electron 9.1 x 10-31 kg, the value of = 9x10⁹ m/F. Give the answer for the universal gravitational constant 6.7 x 10-11 N kg 2m-2, the electron charge -1.6 x 10-¹9 C and the gravitational force in 10-47 N. 1 Απερ Answer:arrow_forward9 8 7+ 6+ 5+ 4+ 3+ 2+ 1 ||ū|| 1 = 2 3 → U 4 LO 5 6 7 Find the magnitude of u. Enter an exact answer as an expression with a square root symbol or enter an approximate answer as a decimal rounded to the nearest hundredth. 8 9arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning