Concept explainers
Find to three significant digits the charge and the mass of the following particles. Suggestion: Begin by looking up the mass of a neutral atom on the periodic table of the elements in Appendix C. (a) an ionized hydrogen atom, represented as H+ (b) a singly ionized sodium atom, Na+ (c) a chloride ion Cl− (d) a doubly ionized calcium atom, Ca++ = Ca2+ (e) the center of an ammonia molecule, modeled as an N3− ion (f) quadruply ionized nitrogen atoms, N4+, found in plasma in a hot star (g) the nucleus of a nitrogen atom (h) the molecular ion H2O−
(a)
The charge and mass of ionized hydrogen atom up to three significant digits.
Answer to Problem 1P
The charge and mass of ionized hydrogen atom is
Explanation of Solution
The ionized hydrogen atom is
When the hydrogen atom is ionized by emission of electron or absorption of electron, in emission process the electron is removed from the atom and in absorption process electron is gained, Hydrogen always forms the positive ion.
The charge is calculated as,
The mass is calculated as,
Conclusion:
Therefore, the charge of ionized hydrogen atom is
(b)
The charge and mass of singly ionized sodium atom
Answer to Problem 1P
The charge and mass of singly ionized sodium atom
Explanation of Solution
A singly ionized sodium atom is
The charge of an ionized atom is given by the number of electron is gained or lost by the neutral atom as the atom forms an ion by losing a electron so its charge is
The charge of sodium ion is,
The mass of electron is negligible compared to mass of Hydrogen. Sodium atom has more mass than the hydrogen atom so the positive ion of sodium atom that is formed by the loss of an electron has negligibly mass that can be ignored.
Conclusion:
Therefore, the charge of ionized sodium atom is
(c)
The charge and mass of ionized chlorine atom
Answer to Problem 1P
The charge and mass of ionized chlorine atom
Explanation of Solution
A ionized Chlorine atom that is represented is
When the Chlorine atom is ionized by emission of electron as the electronic configuration of Chlorine atom is
The charge of an ionized atom is given by the number of electron is gained or lost by the neutral atom as the atom forms an ion by losing a electron so its charge is
The charge of Chlorine ion is,
The mass of electron is negligible compared to mass of Hydrogen. Chlorine atom has more mass than the hydrogen atom so the negative ion of chlorine atom which is formed by the gain of an electron has negligibly mass that can be ignored.
Conclusion:
The charge of ionized Chlorine atom is
(d)
The charge and mass of doubly ionized Calcium atom
Answer to Problem 1P
The charge and mass of doubly ionized Calcium atom
Explanation of Solution
A doubly ionized Calcium atom is
The charge of an ionized atom is given by the number of electron is gained or lost by the neutral atom as the atom forms an ion by losing two electron so its charge is
The charge of Calcium ion is,
The mass of electron is negligible compared to mass of H. Calcium atom has more mass than the hydrogen atom so the positive ion of Calcium atom that is formed by the loss of two electron has negligibly mass that can be ignored.
Conclusion:
Therefore, the charge of ionized Chlorine atom is
(e)
The charge and mass of the centre of ammonia molecule
Answer to Problem 1P
The charge and mass of the centre of ammonia molecule
Explanation of Solution
The centre of ammonia molecule is
The charge of an ionized atom is given by the number of electron is gained or lost by the neutral atom as the atom forms an ion by losing a electron so its charge is
The charge of Nitrogen ion is,
The mass of electron is negligible compared to mass of Hydrogen. Nitrogen atom has more mass than the hydrogen atom so the negative ion of centre of Ammonia molecule atom which is formed by the gain of three electron has negligibly mass that can be ignored.
Conclusion:
The charge of centre of Ammonia molecule is
(f)
The charge and mass of the quadruple ionized Nitrogen
Answer to Problem 1P
The charge and mass of the quadruple ionized Nitrogen
Explanation of Solution
The quadruple ionized Nitrogen atoms found in plasma of hot star is
When the Nitrogen atom is ionized by emission of electron as the electronic configuration of sodium atom is
The charge of an ionized atom is given by the number of electron is gained or lost by the neutral atom as the atom forms an ion by losing four electrons so its charge is
The charge of quadruple Nitrogen ion is,
The mass of electron is negligible compared to mass of Hydrogen. Nitrogen atom has more mass than the hydrogen atom so the positive ion of centre of quadruple atom that is formed by the loss of four electrons has negligibly mass that can be ignored.
Conclusion:
The charge and mass of the quadruple ionized Nitrogen
(g)
The charge and mass of the nucleus of nitrogen atom
Answer to Problem 1P
The charge and mass of the nucleus of nitrogen atom
Explanation of Solution
The nucleus of nitrogen ion is
The charge of an ionized atom is given by the number of electron is gained or lost by the neutral atom as the atom forms an ion by losing a electron so its charge is
The charge of nucleus of Nitrogen ion is;
The mass of electron is negligible compared to mass of Hydrogen. Nitrogen atom has more mass than the hydrogen atom so the positive ion of centre of quadruple atom that is formed by the loss of seven electrons has negligibly mass that can be ignored.
Conclusion:
The charge of quadruple is
(h)
The charge and mass of the Molecular ion
Answer to Problem 1P
The charge and mass of the Molecular ion
Explanation of Solution
The molecular ion of water is
The charge of molecule of
The mass of electron is negligible compared to mass of Hydrogen. Water molecule has more mass than the hydrogen atom so the ionized water molecule that is formed by the gain of one electron has negligibly mass that can be ignored.
Conclusion:
Therefore, the charge of Molecule of
Want to see more full solutions like this?
Chapter 23 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
Fundamentals Of Thermodynamics
Chemistry: Atoms First
Applications and Investigations in Earth Science (9th Edition)
Genetics: From Genes to Genomes
- answer both questionsarrow_forward- 13- 3. Shastri recalled reading that for an ideal transformer, "the ratio of the primary voltage to the secondary voltage is equal to the ratio of the secondary current to the primary current." Plan and design an experiment to investigate whether the statement above is true. (8) • With the aid of a fully labelled circuit diagram, describe a procedure which can be used to investigate whether the statement is true. The circuit diagram must include the following components: A variable AC voltage supply • AC voltmeters • AC ammeters A transformer with adjustable turns ratio Connecting wires • ° A load resistorarrow_forwardanswer question 1-6arrow_forward
- Fractions 1. Covert 5/7 to a decimal 2. 5/7 x 3/8 3. 2/5 divided 4/9 4. covert 37/ 19 to a decimalarrow_forwardthis is an exam past paper question that i need help with becuase i am reviewing not a graded assignmentarrow_forwardsunny (1) -13- end. One box contains nothing inside; one has a piece of resistance wire between the terminals You are provided with three sealed identical matchboxes labelled A, B and C, with terminals at each and the other, a semi-conductor diode. Plan and design an experiment to identify the contents of each box. You are provided with the following elements for your apparatus: Ammeter Low voltage power supply Connecting wires Labelled circuit diagram Draw a well-labelled circuit diagram to show how you would connect the apparatus listed above to each matchbox. (3 maarrow_forward
- RAD127 Radiographic Equipment and Computers SI Units in Radiography Ch. 1 & 2 Instructions: Provide the units for each of the following in full and short forms 1. Mass - kg, 9 or (1b)) ・ 2. Energy, Work - W = FD,J 3. Air kerma -(Gya) 4. Absorbed Dose- 5. Effective Dose J/kg (94+) jlkg J/kg, Sv 6. Radioactivity - 5-1, Bq 7. Weight 8. Time 9. Force 10. Power B9 wt, wt-mg, N -(s) F= ma, N, OR 1b. (JIS), P= work It = Fdlt, Jarrow_forwardanswer 1-8arrow_forward1 . Solve the equation 2/7=y/3 for y. 2. Solve the equation x/9=2/6 for x. 3. Solve the equation z + 4 = 10 This is algebra and the equation is fraction.arrow_forward
- two satellites are in circular orbits around the Earth. Satellite A is at an altitude equal to the Earth's radius, while satellite B is at an altitude equal to twice the Earth's radius. What is the ratio of their periods, Tb/Taarrow_forwardFresnel lens: You would like to design a 25 mm diameter blazed Fresnel zone plate with a first-order power of +1.5 diopters. What is the lithography requirement (resolution required) for making this lens that is designed for 550 nm? Express your answer in units of μm to one decimal point. Fresnel lens: What would the power of the first diffracted order of this lens be at wavelength of 400 nm? Express your answer in diopters to one decimal point. Eye: A person with myopic eyes has a far point of 15 cm. What power contact lenses does she need to correct her version to a standard far point at infinity? Give your answer in diopter to one decimal point.arrow_forwardParaxial design of a field flattener. Imagine your optical system has Petzal curvature of the field with radius p. In Module 1 of Course 1, a homework problem asked you to derive the paraxial focus shift along the axis when a slab of glass was inserted in a converging cone of rays. Find or re-derive that result, then use it to calculate the paraxial radius of curvature of a field flattener of refractive index n that will correct the observed Petzval. Assume that the side of the flattener facing the image plane is plano. What is the required radius of the plano-convex field flattener? (p written as rho )arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning