Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 23, Problem 38P

(a)

To determine

The electric field on the axis of the disk at 5.00cm from the center of the disk.

(a)

Expert Solution
Check Mark

Answer to Problem 38P

The electric field on the axis of the disk at 5.00cm from the center of the disk is 383.03MN/C.

Explanation of Solution

Write the expression for the electric field on the axis of the disk at 5.00cm from the center of the disk.

    Ex=2πkeσ(1x(x2+R2)12)                                                                                    (I)

Here, σ is the surface charge density, R is the radius and ke is the Coulomb’s constant.

Write the constant value for the Coulomb’s constant k.

    ke=8.9876 ×109Nm2/C2

Conclusion:

Convert the radius of the disk from cm to m.

    R=35.0cm(1m100cm)=0.35m

Convert the distance from the disk from cm to m.

    x=5.00cm(1m100cm)=0.05m

Substitute 8.9876 ×109Nm2/C2 for ke, 7.90×103C/m2 for σ, 0.35m for R and 0.05m for x in equation (I), to calculate Ex.

    Ex=0.05m=2π(8.9876 ×109Nm2/C2)(7.90×103C/m2)(10.05m((0.05m)2+(0.35m)2)12)=(446.1189×106)(10.05(0.125)12)N/C=(446.1189×106)(10.050.3535)N/C=(446.1189×106)(10.1414)N/C

Further simplify the above equation to find Ex=0.05m.

    Ex=0.05m=(446.1189×106)×0.8586N/C=383.03×106N/C(1MN/C106N/C)=383.03MN/C

Therefore, the electric field on the axis of the disk at 5.00cm from the center of the disk is 383.03MN/C.

(b)

To determine

The electric field on the axis of the disk at 10.0cm from the center of the disk.

(b)

Expert Solution
Check Mark

Answer to Problem 38P

The electric field on the axis of the disk at 10.0cm from the center of the disk is 323.5MN/C.

Explanation of Solution

Conclusion:

Convert the distance from the disk from cm to m.

    x=10.0cm(1m100cm)=0.10m

Substitute 8.9876 ×109N.m2/C2 for ke, 7.90×103C/m2 for σ, 0.35m for R and 0.10m for x in equation (I), to calculate Ex.

    Ex=0.10m=2π(8.9876 ×109N.m2/C2)(7.90×103C/m2)(10.10m((0.10m)2+(0.35m)2)12)=(446.1189×106)(10.10(0.1325)12)N/C=(446.1189×106)(10.100.36400)N/C=(446.1189×106)(10.2747)N/C

Further simplify the above equation to find Ex=0.10m.

    Ex=0.10m=(446.1189×106)×0.72527N/C=323.5×106N/C(1MN/C106N/C)=323.5MN/C

Therefore, the electric field on the axis of the disk at 10.0cm from the center of the disk is 323.5MN/C.

(c)

To determine

The electric field on the axis of the disk at 50.0cm from the center of the disk.

(c)

Expert Solution
Check Mark

Answer to Problem 38P

The electric field on the axis of the disk at 50.0cm from the center of the disk is 80.44MN/C.

Explanation of Solution

Conclusion:

Convert the distance of the disk from cm to m.

    x=50.0cm(1m100cm)=0.50m

Substitute 8.9876 ×109N.m2/C2 for ke, 7.90×103C/m2 for σ, 0.35m for R and 0.50m for x in equation (I), to calculate Ex.

    Ex=0.50m=2π(8.9876 ×109N.m2/C2)(7.90×103C/m2)(10.50m((0.50m)2+(0.35m)2)12)=(446.1189×106)(10.50(0.3725)12)N/C=(446.1189×106)(10.500.610)N/C=(446.1189×106)(10.8196)N/C

Further simplify the above equation to find Ex=0.50m.

    Ex=0.50m=(446.1189×106)×0.18032N/C=80.44×106N/C(1MN/C106N/C)=80.44MN/C

Therefore, the electric field on the axis of the disk at 50.0cm from the center of the disk is 80.44MN/C.

(d)

To determine

The electric field on the axis of the disk at 200cm from the center of the disk.

(d)

Expert Solution
Check Mark

Answer to Problem 38P

The electric field on the axis of the disk at 200cm from the center of the disk is 6.88MN/C.

Explanation of Solution

Conclusion:

Convert the distance of the disk from cm to m.

    x=200cm(1m100cm)=2.0m

Substitute 8.9876 ×109N.m2/C2 for ke, 7.90×103C/m2 for σ, 0.35m for R and 2.0m for x in equation (I) to calculate Ex.

    Ex=2.0m=2π(8.9876 ×109N.m2/C2)(7.90×103C/m2)(12m((2m)2+(0.35m)2)12)=(446.1189×106)(12(4.1225)12)N/C=(446.1189×106)(122.030)N/C=(446.1189×106)(10.9852)N/C

Further simplify the above equation to find Ex=0.50m.

    Ex=2.0m=(446.1189×106)×0.01477N/C=6.88×106N/C(1MN/C106N/C)=6.88MN/C

Therefore, the electric field on the axis of the disk at 200cm from the center of the disk is 6.88MN/C.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]

Chapter 23 Solutions

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term

Ch. 23 - Prob. 6OQCh. 23 - Prob. 7OQCh. 23 - Prob. 8OQCh. 23 - Prob. 9OQCh. 23 - Prob. 10OQCh. 23 - Prob. 11OQCh. 23 - Prob. 12OQCh. 23 - Prob. 13OQCh. 23 - Prob. 14OQCh. 23 - Prob. 15OQCh. 23 - Prob. 1CQCh. 23 - A charged comb often attracts small bits of dry...Ch. 23 - Prob. 3CQCh. 23 - Prob. 4CQCh. 23 - Prob. 5CQCh. 23 - Prob. 6CQCh. 23 - Prob. 7CQCh. 23 - Prob. 8CQCh. 23 - Prob. 9CQCh. 23 - Prob. 10CQCh. 23 - Prob. 11CQCh. 23 - Find to three significant digits the charge and...Ch. 23 - Prob. 2PCh. 23 - Prob. 3PCh. 23 - Prob. 4PCh. 23 - In a thundercloud, there may be electric charges...Ch. 23 - (a) Find the magnitude of the electric force...Ch. 23 - Prob. 7PCh. 23 - Nobel laureate Richard Feynman (19181088) once...Ch. 23 - A 7.50-nC point charge is located 1.80 m from a...Ch. 23 - Prob. 10PCh. 23 - Prob. 11PCh. 23 - Prob. 12PCh. 23 - Prob. 13PCh. 23 - Prob. 14PCh. 23 - Prob. 15PCh. 23 - Prob. 16PCh. 23 - Review. In the Bohr theory of the hydrogen atom,...Ch. 23 - Prob. 18PCh. 23 - Prob. 19PCh. 23 - Prob. 20PCh. 23 - Prob. 21PCh. 23 - Why is the following situation impossible? Two...Ch. 23 - Prob. 23PCh. 23 - Prob. 24PCh. 23 - Prob. 25PCh. 23 - Prob. 26PCh. 23 - Prob. 27PCh. 23 - Prob. 28PCh. 23 - Prob. 29PCh. 23 - Prob. 30PCh. 23 - Prob. 31PCh. 23 - Two charged particles are located on the x axis....Ch. 23 - Prob. 33PCh. 23 - Two 2.00-C point charges are located on the x...Ch. 23 - Prob. 35PCh. 23 - Consider the electric dipole shown in Figure...Ch. 23 - A rod 14.0 cm long is uniformly charged and has a...Ch. 23 - Prob. 38PCh. 23 - A uniformly charged ring of radius 10.0 cm has a...Ch. 23 - The electric field along the axis of a uniformly...Ch. 23 - Prob. 41PCh. 23 - Prob. 42PCh. 23 - A continuous line of charge lies along the x axis,...Ch. 23 - Prob. 44PCh. 23 - Prob. 45PCh. 23 - Prob. 46PCh. 23 - A negatively charged rod of finite length carries...Ch. 23 - Prob. 48PCh. 23 - Prob. 49PCh. 23 - Prob. 50PCh. 23 - A proton accelerates from rest in a uniform...Ch. 23 - Prob. 52PCh. 23 - Prob. 53PCh. 23 - Protons are projected with an initial speed vi =...Ch. 23 - Prob. 55PCh. 23 - Prob. 56PCh. 23 - A proton moves at 4.50 105 m/s in the horizontal...Ch. 23 - Prob. 58APCh. 23 - Consider an infinite number of identical...Ch. 23 - A particle with charge 3.00 nC is at the origin,...Ch. 23 - Prob. 61APCh. 23 - Prob. 62APCh. 23 - Prob. 63APCh. 23 - Prob. 64APCh. 23 - Prob. 65APCh. 23 - Prob. 66APCh. 23 - Prob. 67APCh. 23 - Prob. 68APCh. 23 - Prob. 69APCh. 23 - Two point charges qA = 12.0 C and qB = 45.0 C and...Ch. 23 - Prob. 71APCh. 23 - Prob. 72APCh. 23 - Two small spheres hang in equilibrium at the...Ch. 23 - Prob. 74APCh. 23 - Prob. 75APCh. 23 - Prob. 76APCh. 23 - Prob. 77APCh. 23 - Prob. 78APCh. 23 - Prob. 79APCh. 23 - Prob. 80APCh. 23 - Prob. 81APCh. 23 - Prob. 82APCh. 23 - Prob. 83APCh. 23 - Identical thin rods of length 2a carry equal...Ch. 23 - Prob. 85CPCh. 23 - Prob. 86CPCh. 23 - Prob. 87CPCh. 23 - Prob. 88CPCh. 23 - Prob. 89CPCh. 23 - Prob. 90CPCh. 23 - Two particles, each with charge 52.0 nC, are...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY