An Introduction to Physical Science
14th Edition
ISBN: 9781305079137
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2.3, Problem 2.3CE
What is the average speed in mi/h of a person at the equator as a result of the Earth’s rotation? (Take the radius of the Earth to be RE = 4000 mi.)
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A Tire has a radius of 0.58 m. If it is driven of 2.8 km, What is the total angle that it has rotated ?
An automobile tire is rated to last for 50 000 mi. Estimate the number of revolutions the tire will make in its lifetime.
An automobile tire is rated to last 50000 miles.to an order magnitude, through how many revolutions will it turn ?
Chapter 2 Solutions
An Introduction to Physical Science
Ch. 2.1 - What is needed to designate a position?Ch. 2.1 - What is motion?Ch. 2.2 - Between two points, which may be greater in...Ch. 2.2 - Prob. 2PQCh. 2.2 - Prob. 2.1CECh. 2.2 - A communications satellite is in a circular orbit...Ch. 2.3 - What is the average speed in mi/h of a person at...Ch. 2.3 - What motional changes produce an acceleration?Ch. 2.3 - Prob. 2PQCh. 2.3 - If the car in the preceding example continues to...
Ch. 2.3 - Prob. 2.5CECh. 2.4 - Prob. 1PQCh. 2.4 - Prob. 2PQCh. 2.4 - Prob. 2.6CECh. 2.5 - Neglecting air resistance, why would a ball...Ch. 2.5 - Prob. 2PQCh. 2 - Visualize the connections and give the descriptive...Ch. 2 - KEY TERMS 1. physics (intro) 2. position (2.1) 3....Ch. 2 - KEY TERMS 1. physics (intro) 2. position (2.1) 3....Ch. 2 - Prob. CMCh. 2 - Prob. DMCh. 2 - Prob. EMCh. 2 - Prob. FMCh. 2 - Prob. GMCh. 2 - Prob. HMCh. 2 - Prob. IMCh. 2 - Prob. JMCh. 2 - Prob. KMCh. 2 - Prob. LMCh. 2 - Prob. MMCh. 2 - Prob. NMCh. 2 - Prob. OMCh. 2 - Prob. PMCh. 2 - Prob. QMCh. 2 - KEY TERMS 1. physics (intro) 2. position (2.1) 3....Ch. 2 - What is necessary to designate a position? (2.1)...Ch. 2 - Which one of the following describes an object in...Ch. 2 - Which one of the following is always true about...Ch. 2 - Which is true of an object with uniform velocity?...Ch. 2 - Acceleration may result from what? (2.3) (a) an...Ch. 2 - For a constant linear acceleration, what changes...Ch. 2 - Which one of the following is true for a...Ch. 2 - An object is projected straight upward. Neglecting...Ch. 2 - If the speed of an object in uniform circular...Ch. 2 - Neglecting air resistance, which of the following...Ch. 2 - In the absence of air resistance, a projectile...Ch. 2 - A football is thrown on a long pass. Compared to...Ch. 2 - An object is in motion when it undergoes a...Ch. 2 - Speed is a(n) ___ quantity. (2.2)Ch. 2 - Velocity is a(n) ___ quantity. (2.2)Ch. 2 - ___ is the actual path length. (2.2)Ch. 2 - Prob. 5FIBCh. 2 - Prob. 6FIBCh. 2 - The distance traveled by a dropped object...Ch. 2 - Prob. 8FIBCh. 2 - The metric units associated with acceleration are...Ch. 2 - Prob. 10FIBCh. 2 - Prob. 11FIBCh. 2 - Neglecting air resistance, a horizontally thrown...Ch. 2 - What area of physics involves the study of objects...Ch. 2 - What is necessary to designate the position of an...Ch. 2 - How are length and time used to describe motion?Ch. 2 - Prob. 4SACh. 2 - Prob. 5SACh. 2 - How is average speed analogous to an average class...Ch. 2 - A jogger jogs two blocks directly north. (a) How...Ch. 2 - Prob. 8SACh. 2 - The gas pedal of a car is commonly referred to as...Ch. 2 - Does a negative acceleration always mean that an...Ch. 2 - A ball is dropped. Assuming free fall, what is its...Ch. 2 - A vertically projected object has zero velocity at...Ch. 2 - Can a car be moving at a constant speed of 60 km/h...Ch. 2 - What is centripetal about centripetal...Ch. 2 - Are we accelerating as a consequence of the Earth...Ch. 2 - What is the direction of the acceleration vector...Ch. 2 - For projectile motion, what quantities are...Ch. 2 - How do the motions of horizontal projections with...Ch. 2 - Prob. 19SACh. 2 - Can a baseball pitcher throw a fastball in a...Ch. 2 - Figure 2.14(b) shows a multiflash photograph of...Ch. 2 - Taking into account air resistance, how do you...Ch. 2 - Do highway speed limit signs refer to average...Ch. 2 - Prob. 2AYKCh. 2 - What is the direction of the acceleration vector...Ch. 2 - Is an object projected vertically upward in free...Ch. 2 - A student sees her physical science professor...Ch. 2 - How would (a) an updraft affect a skydiver in...Ch. 2 - A skydiver uses a parachute to slow the landing...Ch. 2 - Tractor-trailer rigs often have an airfoil on top...Ch. 2 - A gardener walks in a flower garden as illustrated...Ch. 2 - What is the gardeners displacement (Fig. 2.21)?...Ch. 2 - At a track meet, a runner runs the 100-m dash in...Ch. 2 - A jogger jogs around a circular track with a...Ch. 2 - A space probe on the surface of Mars sends a radio...Ch. 2 - A group of college students eager to get to...Ch. 2 - A student drives the 100-mi trip back to campus...Ch. 2 - A jogger jogs from one end to the other of a...Ch. 2 - An airplane flying directly eastward at a constant...Ch. 2 - A race car traveling northward on a straight,...Ch. 2 - A sprinter starting from rest on a straight, level...Ch. 2 - Modern oil tankers weigh more than a half-million...Ch. 2 - A motorboat starting from rest travels in a...Ch. 2 - A car travels on a straight, level road. (a)...Ch. 2 - A ball is dropped from the top of an 80-m-high...Ch. 2 - What speed does the ball in Exercise 15 have in...Ch. 2 - Figure 1.18 (Chapter 1) shows the Hoover Dam...Ch. 2 - A spaceship hovering over the surface of Mars...Ch. 2 - A person drives a car around a circular, level...Ch. 2 - A race car goes around a circular, level track...Ch. 2 - If you drop an object from a height of 1.5 m, it...Ch. 2 - A golfer on a level fairway hits a ball at an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You hopefully used g=9.8 m/s2 (or thereabouts). That is the gravitational acceleration near the earth's surface. if you rise high above the earth, the gravitational acceleration decreases. Specifically, the gravitational acceleration is inversely proportional to the square of the distance from the earth's center. Equivalently, if you multiply the acceleration by the distance from the earth's center, you should get the same number for all heights. For this problem, take the radius of the earth as 3,902 miles, and calculate the gravitational acceleration of a satellite in low orbit, 182 miles above the surface.arrow_forwardAn object is traveling around the rim of a circular track whose diameter is 45.3 m. When it has rotated by 2π radians, what is its linear displacement (in centimeters)?arrow_forwardThe planet Jupiter has a radius of 43000 miles and rotates one revolution every 10 hours. What is the linear speed of a point on its equator, in miles per hour? The linear speed is approximately miles per hour. (Round to the nearest integer as needed.)arrow_forward
- The Sun orbits the center of the Milky Way galaxy once each 2.60 × 108 years, with a roughly circular orbit averaging 3.00 × 104 light years in radius. (A light year is the distance traveled by light in 1 y.) Calculate the average speed of the Sun in its galactic orbit in m/s.arrow_forwardThe acceleration due to gravity, g, is constant at sea level on the Earth's surface. However, the acceleration decreases as an object moves away from the Earth's surface due to the increase in distance from the center of the Earth. Derive an expression for the acceleration due to gravity at a distance h above the surface of the Earth, gh. Express the equation in terms of the radius R of the Earth, g, and h. 8h = Suppose a 70.00 kg hiker has ascended to a height of 1815 m above sea level in the process of climbing Mt. Washington. By what percent has the hiker's weight changed from its value at sea level as a result of climbing to this elevation? Use g = 9.807 m/s² and R = 6.371 × 106 m. Enter your answer as a positive value. weight change = %arrow_forwardA Cooling fan is turned off when it is running at 684 rev/min. It turns 986 revolutions before it comes to a stop. How long did it take the fan to come to a complete stop? (Your result must be in seconds and without decimals. Maximum of 1% of error is accepted in your answer.)arrow_forward
- a) What is the average speed in kilometers per second of the Earth around the sun, given that the radius of the Earth's orbit is 1.5×108km? b) What is the average velocity of the Earth over a year's time?arrow_forwardA Ferris wheel has radius 23.1 ft. A person takes a seat, and then the wheel turns 2.5 radians. How far is the person above the ground?arrow_forwardProblem 1: Suppose A = (-3.03 m)i + (4.35 m)j, B = (2.71 m)i + (-4.29 m)j + (2.99 m)k, and D = (-2.48 m)i + (-4.5 m)j. Part (a) What is the angle, in degrees, between D and A? Numeric : A numeric value is expected and not an expression. Part (b) What is the angle, in degrees, between D and B? Numeric : A numeric value is expected and not an expression.arrow_forward
- The vector A has a magnitude of 4.0 meters and points in the -x direction. The vector B has a magnitude of 3.0 meters and points in the +y direction. Vector C is defined so that C - A + B = 0. What is the magnitude and direction of vector C? Give your answers to 2 significant figures.arrow_forwardThe average distance of the earth from the sun is about 1.5 x 108 km (Figure 1). Assume that the earth's orbit around the sun is circular and that the sun is at the origin of your coordinate system. (a) Estimate the speed of the earth as it moves in its orbit around the sun. Express your answer in miles per hour with the appropriate number of significant figures. (b) Estimate the angle between the position vector of the earth now and what it will be in 4 months. (c) Calculate the distance between these two positions.arrow_forwardTwo vectors are given by a = 1.5î−4.0ĵ and b = −11.9î + 8.1ĵ. What is the magnitude of b? i already found out magnitude of b is 1.44 but how to calculate the angle between vector b and the positive x-axis?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY