An Introduction to Physical Science
14th Edition
ISBN: 9781305079137
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 18SA
How do the motions of horizontal projections with the same initial speed compare on the Earth and on the Moon?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please provide some direction to complete the part (a) and (b)
%3D
, unit for r
The appropriate units consistent with the SI system are: unit for T (Select]
,and unit for v (Select]
The expression for calculating the orbital period of an object undergoing uniform circular motion is given by: T =
| Select)
A robotic vehicle, or rover, is exploring the surface of Mars. The stationary Mars lander is the origin of coordinates, and the sur-rounding Martian surface lies in the xy-plane. The rover, which we x = 2.0 m - 10.25 m > s22t2represent as a point, has x- and y-coordinates that vary with time:y = 11.0 m > s2t + 10.025 m > s32t3(a) Find the rover’s coordinates and distance from the lander at t = 2.0 s. (b) Find the rover’s displacement and average velocity vectors for the interval t = 0.0 s to t = 2.0 s. (c) Find a general S. Express expression for the rover’s instantaneous velocity vector vS at t = 2.0 s in component form and in terms of magnitude and vdirection.
d) Find the instantaneous acceleration at t = 2.0 s.
e) a1 , t=1sec
a0 , t=0sec
Chapter 2 Solutions
An Introduction to Physical Science
Ch. 2.1 - What is needed to designate a position?Ch. 2.1 - What is motion?Ch. 2.2 - Between two points, which may be greater in...Ch. 2.2 - Prob. 2PQCh. 2.2 - Prob. 2.1CECh. 2.2 - A communications satellite is in a circular orbit...Ch. 2.3 - What is the average speed in mi/h of a person at...Ch. 2.3 - What motional changes produce an acceleration?Ch. 2.3 - Prob. 2PQCh. 2.3 - If the car in the preceding example continues to...
Ch. 2.3 - Prob. 2.5CECh. 2.4 - Prob. 1PQCh. 2.4 - Prob. 2PQCh. 2.4 - Prob. 2.6CECh. 2.5 - Neglecting air resistance, why would a ball...Ch. 2.5 - Prob. 2PQCh. 2 - Visualize the connections and give the descriptive...Ch. 2 - KEY TERMS 1. physics (intro) 2. position (2.1) 3....Ch. 2 - KEY TERMS 1. physics (intro) 2. position (2.1) 3....Ch. 2 - Prob. CMCh. 2 - Prob. DMCh. 2 - Prob. EMCh. 2 - Prob. FMCh. 2 - Prob. GMCh. 2 - Prob. HMCh. 2 - Prob. IMCh. 2 - Prob. JMCh. 2 - Prob. KMCh. 2 - Prob. LMCh. 2 - Prob. MMCh. 2 - Prob. NMCh. 2 - Prob. OMCh. 2 - Prob. PMCh. 2 - Prob. QMCh. 2 - KEY TERMS 1. physics (intro) 2. position (2.1) 3....Ch. 2 - What is necessary to designate a position? (2.1)...Ch. 2 - Which one of the following describes an object in...Ch. 2 - Which one of the following is always true about...Ch. 2 - Which is true of an object with uniform velocity?...Ch. 2 - Acceleration may result from what? (2.3) (a) an...Ch. 2 - For a constant linear acceleration, what changes...Ch. 2 - Which one of the following is true for a...Ch. 2 - An object is projected straight upward. Neglecting...Ch. 2 - If the speed of an object in uniform circular...Ch. 2 - Neglecting air resistance, which of the following...Ch. 2 - In the absence of air resistance, a projectile...Ch. 2 - A football is thrown on a long pass. Compared to...Ch. 2 - An object is in motion when it undergoes a...Ch. 2 - Speed is a(n) ___ quantity. (2.2)Ch. 2 - Velocity is a(n) ___ quantity. (2.2)Ch. 2 - ___ is the actual path length. (2.2)Ch. 2 - Prob. 5FIBCh. 2 - Prob. 6FIBCh. 2 - The distance traveled by a dropped object...Ch. 2 - Prob. 8FIBCh. 2 - The metric units associated with acceleration are...Ch. 2 - Prob. 10FIBCh. 2 - Prob. 11FIBCh. 2 - Neglecting air resistance, a horizontally thrown...Ch. 2 - What area of physics involves the study of objects...Ch. 2 - What is necessary to designate the position of an...Ch. 2 - How are length and time used to describe motion?Ch. 2 - Prob. 4SACh. 2 - Prob. 5SACh. 2 - How is average speed analogous to an average class...Ch. 2 - A jogger jogs two blocks directly north. (a) How...Ch. 2 - Prob. 8SACh. 2 - The gas pedal of a car is commonly referred to as...Ch. 2 - Does a negative acceleration always mean that an...Ch. 2 - A ball is dropped. Assuming free fall, what is its...Ch. 2 - A vertically projected object has zero velocity at...Ch. 2 - Can a car be moving at a constant speed of 60 km/h...Ch. 2 - What is centripetal about centripetal...Ch. 2 - Are we accelerating as a consequence of the Earth...Ch. 2 - What is the direction of the acceleration vector...Ch. 2 - For projectile motion, what quantities are...Ch. 2 - How do the motions of horizontal projections with...Ch. 2 - Prob. 19SACh. 2 - Can a baseball pitcher throw a fastball in a...Ch. 2 - Figure 2.14(b) shows a multiflash photograph of...Ch. 2 - Taking into account air resistance, how do you...Ch. 2 - Do highway speed limit signs refer to average...Ch. 2 - Prob. 2AYKCh. 2 - What is the direction of the acceleration vector...Ch. 2 - Is an object projected vertically upward in free...Ch. 2 - A student sees her physical science professor...Ch. 2 - How would (a) an updraft affect a skydiver in...Ch. 2 - A skydiver uses a parachute to slow the landing...Ch. 2 - Tractor-trailer rigs often have an airfoil on top...Ch. 2 - A gardener walks in a flower garden as illustrated...Ch. 2 - What is the gardeners displacement (Fig. 2.21)?...Ch. 2 - At a track meet, a runner runs the 100-m dash in...Ch. 2 - A jogger jogs around a circular track with a...Ch. 2 - A space probe on the surface of Mars sends a radio...Ch. 2 - A group of college students eager to get to...Ch. 2 - A student drives the 100-mi trip back to campus...Ch. 2 - A jogger jogs from one end to the other of a...Ch. 2 - An airplane flying directly eastward at a constant...Ch. 2 - A race car traveling northward on a straight,...Ch. 2 - A sprinter starting from rest on a straight, level...Ch. 2 - Modern oil tankers weigh more than a half-million...Ch. 2 - A motorboat starting from rest travels in a...Ch. 2 - A car travels on a straight, level road. (a)...Ch. 2 - A ball is dropped from the top of an 80-m-high...Ch. 2 - What speed does the ball in Exercise 15 have in...Ch. 2 - Figure 1.18 (Chapter 1) shows the Hoover Dam...Ch. 2 - A spaceship hovering over the surface of Mars...Ch. 2 - A person drives a car around a circular, level...Ch. 2 - A race car goes around a circular, level track...Ch. 2 - If you drop an object from a height of 1.5 m, it...Ch. 2 - A golfer on a level fairway hits a ball at an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A diver running 2.6 m/sm/s dives out horizontally from the edge of a vertical cliff and 3.1 ss later reaches the water below. How high was the cliff?arrow_forwardIf the position vector of a moving particle is Fe) = (4t+ 1)i + (t+2)1 +(6+ t + t?)k, what is the speed of the particle when it reaches the point ( 5, 3, 8) 1) 29 2) 98 3) V29 4) V98 Select one: 1 3 4arrow_forwardA ball is released from rest at the top of an incline whose height 8.5 centimeters and base 54.9 centimeters. Taking xo = 0 at the top of the %3D incline, the horizontal location (along the base, in centimeters) of the ball after 0.52 seconds is:arrow_forward
- A man walks at 5 km/hkm/h in the direction of a 20-km/hkm/h wind. Raindrops fall vertically at 8.2 km/hkm/h in still air. (Need help with this "TEST REVIEW" question)arrow_forwardIf two vectors are equal, what can you say about their components? What can you say about their magnitudes? What can you say about their directions?arrow_forwardAfter a ball rolls off the edge of a horizontal table at time t = 0, its velocity as a function of time is given by v=1.2i9.8tj where v is in meters per second and t is in seconds. The balls displacement away from the edge of the table, during the time interval of 0.380 s for which the ball is in flight, is given by r=00.3803vdt To perform the integral, you can use the calculus theorem [A+Bf(x)]dx=Adx+Bf(x)dx You can think of the units and unit vectors as constants, represented by A and B. Perform the integration to calculate the displacement of the ball from the edge of the table at 0.380 s.arrow_forward
- Why is the following situation impassible? A normally proportioned adult walks briskly along a straight line in the +x direction, standing straight up and holding his right arm vertical and next to his body so that the arm does not swing. His right hand holds a ball at his side a distance h above the floor. When the ball passes above a point marked as x = 0 on the horizontal floor, he opens his fingers to release the ball from rest relative to his hand. The ball strikes the ground for the first time at position x = 7.00h.arrow_forwardWhen the Earth passes a planet such as Mars, the planet appears to move backward for a time, a phenomenon known as retrograde motion. Ancient astronomers believed that the Earth did not move and that the planets moved around the Earth. They also believed that uniform circular motion was perfect and that heavenly objects such as planets exhibited this perfect motion. How do you suppose ancient astronomers accounted for retrograde motion? Include a sketch with your explanation.arrow_forwardThe Lunar Roving Vehicle used In NASA’s late Apollo missions reached an unofficial lunar land speed of 5.0 m/ s by astronaut Eugene Cernan. If the rover was moving at this speed on a flat lunar surface and hit a small bump that projected it off the surface at an angle of 20 , how long would it be “airborne” on the Moon?arrow_forward
- A man paddles a canoe in a long, straight section of a river. The canoe moves downstream with constant speed 3 m/s relative to the water. The river has a steady current of 1 m/s relative to the bank. The mans hat falls into the river. Five minutes later, he notices that his hat is missing and immediately turns the canoe around, paddling upriver with the same constant speed of 3 m/s relative to the water. How long does it take the man to row back upriver to reclaim his hat?arrow_forwardOlympus Mons on Mars is the largest volcano in the solar system, at a height of 25 km and with a radius of 312 km. If you are standing on the summit, with what Initial velocity would you have to fire a projectile from a cannon horizontally to clear the volcano and land on the surface of Mars? Note that Mars has an acceleration of gravity of 3.7m/s2 .arrow_forwardNeglecting air resistance, why would a ball projected horizontally and another ball dropped at the same time from the same initial height hit the ground together?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY