FUND.OF GEN CHEM CHAP 1-13 W/ACCESS
16th Edition
ISBN: 9781323406038
Author: McMurry
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 23.24UKC
According to the fluid-mosaic model (Figure 23.7), the cell membrane is held together mostly by hydrophobic interactions. Considering the forces applied, why does the cell membrane not rupture as you move, press against objects, etc.?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In an experiment, a 0.001 (mole fraction) solution of polysaccharide in water is made and is placed in the compartment A (see Figure below). Compartment B is filled with pure water. The two compartments are separated by a porous semi-permeable membrane that allows the exchange of water molecules between the two compartments, but not that of the larger polysaccharide molecules
a) Show that the chemical potential of water in compartment A is lower than that in compartment B by 2.48 J/mol.
b) As a result of this chemical potential difference, water molecules will move from compartment B to compartment A. This causes the pressure in compartment A, relative to that in B, to increase. How would this affect the chemical potential of water in compartment B? When would the diffusion of water from B to A cease (i.e. equilibrium is achieved)?
c) Using your answer to part (b), work out the difference between the pressure in compartment A and B when…
Two NaCl solutions, Solution A and Solution B, are separated by a selectively permeable membrane. You observe that the movement of solvent is from Solution B to Solution A. Which solution initially had the higher salt concentration?
Question 2 options:
a)
solution A
b)
solution B
c)
Neither
The intracellular salt content of a red blood cell is about 150 mM. The cell is put in a 500 mM salt beaker. (a) Describe what will happen to the cell in terms of osmosis if the cell membrane is permeable to water but not to ions. (b) Which direction would solutes diff use if the membrane was permeable to ions: into or out of the cell?
Chapter 23 Solutions
FUND.OF GEN CHEM CHAP 1-13 W/ACCESS
Ch. 23.1 - Use Figure 23.1 to identify the family of lipids...Ch. 23.2 - Prob. 23.2PCh. 23.2 - Prob. 23.3PCh. 23.2 - Prob. 23.4KCPCh. 23.3 - Prob. 23.1CIAPCh. 23.3 - Prob. 23.2CIAPCh. 23.3 - Prob. 23.3CIAPCh. 23.3 - Prob. 23.5PCh. 23.3 - Prob. 23.6PCh. 23.3 - Prob. 23.7KCP
Ch. 23.4 - Prob. 23.8PCh. 23.4 - Prob. 23.9PCh. 23.4 - Prob. 23.10PCh. 23.4 - Prob. 23.11PCh. 23.5 - Prob. 23.12PCh. 23.5 - Draw the structure of the sphingomyelin that...Ch. 23.5 - Draw the structure of the glycerophospholipid that...Ch. 23.5 - Prob. 23.16PCh. 23.7 - Prob. 23.17KCPCh. 23.7 - Prob. 23.4CIAPCh. 23.7 - Prob. 23.6CIAPCh. 23.7 - Prob. 23.7CIAPCh. 23.7 - Prob. 23.8CIAPCh. 23.7 - Prob. 23.18PCh. 23.7 - Prob. 23.19PCh. 23.7 - Prob. 23.20KCPCh. 23 - The fatty acid composition of three...Ch. 23 - Prob. 23.23UKCCh. 23 - According to the fluid-mosaic model (Figure 23.7),...Ch. 23 - Dipalmitoylphosphatidylcholine (DPPC) is a...Ch. 23 - Prob. 23.26APCh. 23 - Prob. 23.27APCh. 23 - Prob. 23.28APCh. 23 - Prob. 23.29APCh. 23 - Differentiate between saturated, monounsaturated,...Ch. 23 - Are the carboncarbon double bonds in naturally...Ch. 23 - Prob. 23.32APCh. 23 - Prob. 23.33APCh. 23 - Which of these fatty acids has the lower melting...Ch. 23 - Which of these fatty acids has the higher melting...Ch. 23 - Prob. 23.36APCh. 23 - Prob. 23.37APCh. 23 - Prob. 23.38APCh. 23 - Prob. 23.39APCh. 23 - What function does a wax serve in a plant or...Ch. 23 - Prob. 23.41APCh. 23 - Prob. 23.42APCh. 23 - What kind of lipid is spermacetia fat, a wax, or a...Ch. 23 - Prob. 23.44APCh. 23 - Prob. 23.45APCh. 23 - Prob. 23.46APCh. 23 - Prob. 23.47APCh. 23 - Prob. 23.48APCh. 23 - Prob. 23.50APCh. 23 - Prob. 23.52APCh. 23 - Prob. 23.53APCh. 23 - Describe the difference between a triacylglycerol...Ch. 23 - Why are glycerophospholipids, rather than...Ch. 23 - Prob. 23.56APCh. 23 - Prob. 23.57APCh. 23 - Why are glycerophospholipids more soluble in water...Ch. 23 - Prob. 23.59APCh. 23 - Prob. 23.60APCh. 23 - Prob. 23.61APCh. 23 - Draw the structure of a glycerophospholipid that...Ch. 23 - Prob. 23.63APCh. 23 - What is a major function of cholesterol in your...Ch. 23 - Prob. 23.65APCh. 23 - Prob. 23.66APCh. 23 - Prob. 23.67APCh. 23 - Explain how a micelle differs from a membrane...Ch. 23 - Prob. 23.69APCh. 23 - Prob. 23.70APCh. 23 - Prob. 23.71APCh. 23 - Prob. 23.72APCh. 23 - Prob. 23.73APCh. 23 - Prob. 23.74APCh. 23 - Prob. 23.75APCh. 23 - Draw the structure of a triacylglycerol made from...Ch. 23 - Prob. 23.79CPCh. 23 - Prob. 23.80CPCh. 23 - Explain why cholesterol is not saponifiable.Ch. 23 - Draw cholesterol acetate. Is this molecule...Ch. 23 - Prob. 23.83CPCh. 23 - Prob. 23.84CPCh. 23 - Prob. 23.85CPCh. 23 - Prob. 23.86CPCh. 23 - Prob. 23.88GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.Similar questions
- A red blood cell has an internal salt concentration of ∼150 mM. The cell is placed in a beaker of 500 mM salt. Solve, (a) Assuming the cell membrane is permeable to water but not to ions, describe what will happen to the cell in terms of osmosis. (b) If the membrane were permeable to ions, in which direction would solutes diff use: into or out of the cell?arrow_forwardList the following compounds in order of increasing lipid bilayer permeability: RNA, Ca2+, glucose, ethanol, n2, water.arrow_forwardIn an experiment, a 0.001 (mole fraction) solution of polysaccharide in water is made and is placed in the compartment A. Compartment B is filled with pure water. The two compartments are separated by a porous semi-permeable membrane that allows the exchange of water molecules between the two compartments, but not that of the larger polysaccharide molecules. part 1: Show that the chemical potential of water in compartment A is lower than that in compartment B by 2.48 J/mol.arrow_forward
- (a) Describe permeability of a phospholipid bilayer for the following molecules. Use terms: non-permeable, high permeability, medium permeability. N2, O2, Na+, glucose, sucrose (disaccharide), glycogen, H2O, KCl, K+, Mg2+, glycine and protein (b) Discuss the role of carbonic anhydrase in CO2 transport. (c) Discuss the cause of ‘cold denaturation’ of proteins.arrow_forwardBelow are listed molecules with different chemical characteristics. Knowing that all molecules will eventually diffuse across a phospholipid bilayer, select the list that most accurately predicts the relative rates of diffusion of these molecules (fastest to slowest) across a biological membrane. alanine, propanol, sodium, estrogen sodium, propanol, alanine, estrogen estrogen, propanol, sodium, alanine estrogen, propanol, alanine, sodiumarrow_forwardIn an investigation of osmosis, apple cores were submerged in different molarity solutions to determine the unknown osmolarity of the apple. To determine the molarity five uniform apple cores were massed before submerging them in different molarity solutions. After 24 hours the apple cores were massed again. Then the percent change in mass was determined for the five uniform apple cores in each molarity solution. (b) Identify the osmolarity of the apple.arrow_forward
- The electrochemical gradient across membranes is important in determining movement across membranes for a certain type(s) of solute. Which kind? Both anions and cations Positively charged (cations) Neutral/uncharged solutes Negatively charged (anions)arrow_forwardIf two solutions separated by a semi-permeable membrane are isotonic, can you conclude that they are in chemical equilibrium?arrow_forwardFor this practice problem, would the answer be c)NaCl? My reasoning behind this is because molecules under 100 Da can use simple diffusion, while nonpolar molecules and larger molecules like benzene can use channels via facilitated diffusion. However, NaCl dissociates into ions and cannot readily use diffusion?arrow_forward
- Soft contact lenses are made from hydrogels, which make them soft and flexible. It is important to clean them daily using a sterile, isotonic cleaning solution. The concentration of solutes in the cleaning solution is the same as the concentration of the hydrogel in the contact lens. What would happen if instead of an isotonic cleaning solution, soft contact lenses are cleaned with water? (A) The soft contact lenses will shrink because it will remove too much water by osmosis. B The soft contact lenses will shrink because too much water is absorbed by osmosis. The soft contact lenses will swell and change shape because too much water is absorbed by osmosis. The soft contact lenses will swell and change shape because too much water is removed by osmosis.arrow_forwardSolution A contains 100 mmol/L glucose and Solution B contains 50 mmol/L NaCl. Assume that gNaCl is 2.0, σglucose is 0.5, and σNaCl is 0.8. If a semipermeable membrane separates the two solutions, what is the direction of water flow across the membrane?arrow_forwardThe three fundamental classes of proteins involved in transport across membranes are: i) channelsii) pumpsiii) exchangers For each class, describe its essential features, explain how transport is accomplished and name at least one representative example.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON
Biochemistry
Biochemistry
ISBN:9781319114671
Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:W. H. Freeman
Lehninger Principles of Biochemistry
Biochemistry
ISBN:9781464126116
Author:David L. Nelson, Michael M. Cox
Publisher:W. H. Freeman
Fundamentals of Biochemistry: Life at the Molecul...
Biochemistry
ISBN:9781118918401
Author:Donald Voet, Judith G. Voet, Charlotte W. Pratt
Publisher:WILEY
Biochemistry
Biochemistry
ISBN:9781305961135
Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:Cengage Learning
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning
Fundamentals of General, Organic, and Biological ...
Biochemistry
ISBN:9780134015187
Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. Peterson
Publisher:PEARSON
The Cell Membrane; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=AsffT7XIXbA;License: Standard youtube license