Principles of Instrumental Analysis
7th Edition
ISBN: 9781305577213
Author: Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 23, Problem 23.21QAP
The following cell was found to have a potential of 0.124 V:
Ag|AgCl(sat’d)||Cu2+ (3.25 × 10-3 M|mernbrane electrode for Cu2+
When the solution of known copper activity was replaced with an unknown solution, the potential was found to be 0.055 V. What was the pCu of this unknown solution? Neglect the junction potential.
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 23 Solutions
Principles of Instrumental Analysis
Ch. 23 - Prob. 23.1QAPCh. 23 - Prob. 23.2QAPCh. 23 - Prob. 23.3QAPCh. 23 - Prob. 23.4QAPCh. 23 - Prob. 23.5QAPCh. 23 - Prob. 23.6QAPCh. 23 - Prob. 23.7QAPCh. 23 - Prob. 23.8QAPCh. 23 - Prob. 23.9QAPCh. 23 - List the advantages and disadvantages of a...
Ch. 23 - Prob. 23.11QAPCh. 23 - What arc the advantages of microfabricated ISEs?...Ch. 23 - Prob. 23.13QAPCh. 23 - Prob. 23.14QAPCh. 23 - Prob. 23.15QAPCh. 23 - The following cell was used for the determination...Ch. 23 - The following cell was used to determine the pSO4...Ch. 23 - The formation constant for the mercury(II) acetate...Ch. 23 - Prob. 23.19QAPCh. 23 - The cell Ag|AgCl(sat’d)||H+(a = x)|glass electrode...Ch. 23 - The following cell was found to have a potential...Ch. 23 - The following cell was found to have a potential...Ch. 23 - The following cell was found to have a potential...Ch. 23 - Prob. 23.24QAPCh. 23 - Prob. 23.25QAPCh. 23 - Prob. 23.26QAPCh. 23 - Prob. 23.27QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Calculate the electrode potentials for the following systems: (a) Cr2O72-(5.00 10-3 M),Cr3+(2.50 10-2 M),H+ (0.100 M)|Pt (b) UO22+(0.100 M),U4+ (0.200 M),H+ (0.600 M)|Ptarrow_forwardAn aqueous solution of an unknown salt of vanadium is electrolyzed by a current of 2.50 amps for 1.90 hours. The electroplating is carried out with an efficiency of 95.0%, resulting in a deposit of 2.850 g of vanadium. a How many faradays are required to deposit the vanadium? b What is the charge on the vanadium ions (based on your calculations)?arrow_forwardA galvanic cell is based on the following half-reactions: In this cell, the copper compartment contains a copper electrode and [Cu2+] = 1.00 M, and the vanadium compartment contains a vanadium electrode and V2+ at an unknown concentration. The compartment containing the vanadium (1.00 L of solution) was titrated with 0.0800 M H2EDTA2, resulting in the reaction H2EDTA2(aq)+V2+(aq)VEDTA2(aq)+2H+(aq)K=? The potential of the cell was monitored to determine the stoichiometric point for the process, which occurred at a volume of 500.0 mL H2EDTA2 solution added. At the stoichiometric point, was observed to be 1 .98 V. The solution was buffered at a pH of 10.00. a. Calculate before the titration was carried out. b. Calculate the value of the equilibrium constant, K, for the titration reaction. c. Calculate at the halfway point in the titration.arrow_forward
- An alloy made up of tin and copper is prepared by simultaneously electroplating the two metals from a solution containing Sn(NO3)2 and Cu(NO3)2.If 20.0% of the total current is used to plate tin, while 80.0% is used to plate copper, what is the percent composition of the alloy?arrow_forwardAt what pH does Ecell = 0.00 V for the reduction of dichromate by iodide ion in acid solution, assuming standard-state concentrations of all species except H+ ion?arrow_forwardHalide ions can he deposited at a silver anode, the reaction being Ag(s) + X- AgX(s) +e- Suppose that a cell was formed by immersing a silver anode in an analyte solution that was 0.0250 M Cl-,Br-, and I -ions and connecting the half-cell to a saturated calomel cathode via a salt bridge. (a) Which halide would form first and at what potential? Is the cell galvanic or electrolytic? (b) Could I- and Br- be separated quantitatively? (Take 1.00 l0-5 M as the criterion for quantitative removal of an ion.) If a separation is feasible, what range of cell potential could he used? (c) Repeat part (b) for I- and Cl-. (d) Repeat part (b) for Br- and Cl-.arrow_forward
- Calculate the cell potential of a cell operating with the following reaction at 25C, in which [Cr2O32] = 0.020 M, [I] = 0.015 M, [Cr3+] = 0.40 M, and [H+] = 0.60 M. Cr2O72(aq)+6I(aq)+14H+(aq)2Cr3+(aq)+3I2(s)+7H2O(l)arrow_forwardWhat is the cell potential of the following cell at 25C? Ni(s)Ni2+(1.0M)Sn2(1.5104M)Sn(s)arrow_forwardHow long would it take to electroplate a metal surface with 0.500 g nickel metal from a solution of Ni2+ with a current of 4.00 A?arrow_forward
- The overall reaction for the production of Cu(OH)2 from Cu in oxygenated water can be broken into three steps: an oxidation half-reaction, a reduction half-reaction, and a precipitation reaction. a. Complete and balance the two missing half-reactions to give the overall equation for the oxidation of cooper in seawater. Oxidation half-reaction: ? Reduction half-reaction: ? Precipitation:Cu2+(aq)+2OH(aq)Cu(OH)2(s)Overall:Cu(s)+12O2(g)+H2O(l)Cu(OH)2(s) b. Determine the equilibrium constant for the overall reaction at 25 C using standard reduction potentials and the solubility product constant (Ksp) of Cu(OH)2(s).arrow_forwardThe table below lists the cell potentials for the 10 possible galvanic cells assembled from the metals A. B. C. D. and E. and their respective 1.00 M 2+ ions in solution. Using the data in the table, establish a standard reduction potential table similar to Table 17-1 in the text. Assign a reduction potential of 0.00 V to the half-reaction that falls in the middle of the series. You should get two different tables. Explain why, and discuss what you could do to determine which table is correct. A(s)in A2+(aq) B(s)in B2+(aq) C(s)in V2+(aq) D(s)in D2+(aq) E(s)in E2+(aq) 0.28V 0.81V 0.13V 1.00V D(s)in D2+(aq) 0.72V 0.19V 1.13V C(s)in V2+(aq) 0.41V 0.94V B(s)in B2+(aq) 0.53Varrow_forwardConsider the following galvanic cell: A 15 0-mole sample of NH is added to the Ag compartment (assume 1.00 L of total solution after the addition). The silver ion reacts with ammonia to form complex ions as shown: Ag+(aq)+NH3(aq)AgNH3+(aq)K1=2.1103AgNH3+(aq)+NH3(aq)Ag(NH3)2+(aq)K2=8.2103 Calculate the cell potential after the addition of 15.0 moles of NH3.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Introduction to Electrochemistry; Author: Tyler DeWitt;https://www.youtube.com/watch?v=teTkvUtW4SA;License: Standard YouTube License, CC-BY