(a)
Interpretation:
The standard potential for the following reaction should be predicted.
Concept introduction:
Indicator electrode is a type of electrode that is used in potentiometric titrations. It is used as an endpoint indicator. Membrane electrode and metallic electrodes are classify as indicator electrodes
(b)
Interpretation:
The schematic representation of a cell with a copper indicator electrode and a reference SCE should be stated.
Concept introduction:
Indicator electrode is a type of electrode that is used in potentiometric titrations. It is used as an endpoint indicator. Membrane electrode and metallic electrodes are classify as indicator electrodes
(c)
Interpretation:
The equation that relates the measured potential of the cell in (b) to pBr should be predicted.
Concept introduction:
Indicator electrode is a type of electrode that is used in potentiometric titrations. It is used as an endpoint indicator. Membrane electrode and metallic electrodes are classify as indicator electrodes
(d)
Interpretation:
The pBr of a bromide-containing solution which is saturated with CuBr and consist in the cell described in (b) when the resulting potential is -0.078 V should be predicted.
Concept introduction:
Indicator electrode is a type of electrode that is used in potentiometric titrations. It is used as an endpoint indicator. Membrane electrode and metallic electrodes are classify as indicator electrodes
Trending nowThis is a popular solution!
Chapter 23 Solutions
Principles of Instrumental Analysis
- Calculate the standard cell potential of the following cell at 25C. Cr(s)Cr3(aq)Hg22(aq)Hg(l)arrow_forwardWhat is the cell potential of the following cell at 25C? Ni(s)Ni2+(1.0M)Sn2(1.5104M)Sn(s)arrow_forwardFrom the standard potentials Ag2SeO4(s)+2e2Ag(s)+SeO42-E0=0.355V Ag++2eAg(s)E0=0.799V calculate the solubility product constant for Ag2SeO4.arrow_forward
- What is the standard cell potential you would obtain from a cell at 25C using an electrode in which I(aq) is in contact with I2(s) and an electrode in which a chromium strip dips into a solution of Cr3(aq)?arrow_forwardThe cell potential of the following cell at 25C is 0.480 V. ZnZn2+(1M)H+(testsolution)H2(1atm)Pt What is the pH of the test solution?arrow_forwardCalculate the cell potential of a cell operating with the following reaction at 25C, in which [Cr2O32] = 0.020 M, [I] = 0.015 M, [Cr3+] = 0.40 M, and [H+] = 0.60 M. Cr2O72(aq)+6I(aq)+14H+(aq)2Cr3+(aq)+3I2(s)+7H2O(l)arrow_forward
- Calculate the cell potential of a cell operating with the following reaction at 25C, in which [MnO4] = 0.010 M, [Br] = 0.010 M. [Mn2] = 0.15 M, and [H] = 1.0 M. 2MNO4(aq)+10Br(aq)+16H+(aq)2MN2(aq)+5Br2(l)+8H2O(l)arrow_forwardCalculate the standard cell potential of the cell corresponding to the oxidation of oxalic acid, H2C2O4, by permanganate ion. MnO4. 5H2C2O4(aq)+2MnO4(aq)+6H+(aq)10CO2(g)+2Mn2+(aq)+8H2O(l) See Appendix C for free energies of formation: Gf for H2C2O4(aq) is 698 kJ.arrow_forwardIt took 150. s for a current of 1.25 A to plate out 0.109 g of a metal from a solution containing its cations. Show that it is not possible for the cations to have a charge of 1+.arrow_forward
- The half-cells Ag+(aq. 1.0 M)|Ag(s) and H+(aq, ? M)|H2(1.0 bar) are linked by a salt bridge to create a voltaic cell. With the silver electrode as the cathode, a value of 0.902 V is recorded tor kcell at 298 K. Determine the concentration of H+ and the pH of the solution.arrow_forwardHalide ions can he deposited at a silver anode, the reaction being Ag(s) + X- AgX(s) +e- Suppose that a cell was formed by immersing a silver anode in an analyte solution that was 0.0250 M Cl-,Br-, and I -ions and connecting the half-cell to a saturated calomel cathode via a salt bridge. (a) Which halide would form first and at what potential? Is the cell galvanic or electrolytic? (b) Could I- and Br- be separated quantitatively? (Take 1.00 l0-5 M as the criterion for quantitative removal of an ion.) If a separation is feasible, what range of cell potential could he used? (c) Repeat part (b) for I- and Cl-. (d) Repeat part (b) for Br- and Cl-.arrow_forwardTable 17-1 lists common half-reactions along with the standard reduction potential associated with each half-reaction. These standard reduction potentials are all relative to some standard. What is the standard (zero point)? lf is positive for a half-reaction, what does it mean? If is negative for a half-reaction, what does it mean? Which species in Table 17-1 is most easily reduced? Least easily reduced? The reverse of the half-reactions in Table 17-1 are the oxidation half-reactions. How are standard oxidation potentials determined? In Table 17-1, which species is the best reducing agent? The worst reducing agent? To determine the standard cell potential for a redox reaction, the standard reduction potential is added to the standard oxidation potential. What must be true about this sum if the cell is to be spontaneous (produce a galvanic cell)? Standard reduction and oxidation potentials are intensive. What does this mean? Summarize how line notation is used to describe galvanic cells.arrow_forward
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning