(a)
Interpretation:
The Ca2+ concentration in the inner solution of electrode 2 should be determined.
Concept introduction:
Nernst equation gives the cell potential under non-standard conditions.
E − cell potential
E0 − standard cell potential
R − universal gas constant
T − temperature in Kelvin
n − number of electrons transferred
F − Faraday constant
Q − Reaction quotient
Answer to Problem 23.27QAP
Explanation of Solution
The given reactions are represented as follows:
The equilibrium constant can be calculated as follows:
Here,
If x mol/L of Ca-EDTA complex is dissociated.
(b)
Interpretation:
The ionic strength of the solution in Electrode 2 should be determined.
Concept introduction:
The ionic strength can be calculated as follows:
Here,
µ − ionic strength
c − molar concentrations of the ions
Z − charge on the ion.
Answer to Problem 23.27QAP
Explanation of Solution
On putting the respective molar concentrations of ions and charge on the ion, the ionic strength can be calculated as follows:
(c)
Interpretation:
The activity of Ca2+ in electrode 2 should be determined.
Concept introduction:
The activity of coefficient of species A can be calculated as follows:
Here,
Answer to Problem 23.27QAP
Explanation of Solution
The activity of coefficient of species A can be calculated as follows:
Also,
(d)
Interpretation:
The cell potential versus the pCa should be plotted and pCa value where the plot deviated more than 5% from linearity should be determined. For the linear portion, the slope and the intercept should be determined.
Concept introduction:
For cations,
Here,
K − constant
n − number of moles of electrons
X − activity of the cation.
Answer to Problem 23.27QAP
At
Slope = -0.0298
Intercept =0.185733
The plot obeys the equation 23-29.
Explanation of Solution
The data given is as follows:
Activity of Ca2+, M | pCa | Cell potential, V |
1.00E-03 | 3 | 9.30E-02 |
1.00E-04 | 4 | 7.30E-02 |
1.00E-05 | 5 | 3.70E-02 |
1.00E-06 | 6 | 2.00E-03 |
1.00E-07 | 7 | -2.30E-02 |
1.00E-08 | 8 | -5.10E-02 |
1.00E-09 | 9 | 5.50E-02 |
The plot is represented as follows:
At
Let’s draw the graph eliminating this value.
According to the linear regression analysis done in a spread sheet,
Slope = -0.0298
Intercept =0.185733
According to the equation 23.29,
Therefore, the plot obeys the equation 23-29.
(e)
Interpretation:
The cell potential versus the pCa should be plotted for electrode 2 and the range of linearity should be determined. For the linear portion, the slope and the intercept should be determined.
Concept introduction:
For cations,
Here,
K − constant
n − number of moles of electrons
X − activity of the cation.
Answer to Problem 23.27QAP
Range of linearity is from pCa 3 to 6
Slope = -0.0292
Intercept = 0.3119
This electrode obeys the equation 23-29 for higher Ca2+ activities
Explanation of Solution
The data given is as follows:
Activity of Ca2+, M | pCa | Cell potential, V |
1.00E-03 | 3 | 2.28E-01 |
1.00E-04 | 4 | 1.90E-01 |
1.00E-05 | 5 | 1.65E-01 |
1.00E-06 | 6 | 1.39E-01 |
5.60E-07 | 6.25181197 | 1.05E-01 |
3.20E-07 | 6.49485002 | 6.30E-02 |
1.80E-07 | 6.74472749 | 3.60E-02 |
1.00E-07 | 7 | 2.30E-02 |
1.00E-08 | 8 | 1.80E-02 |
1.00E-09 | 9 | 1.70E-02 |
The graph is plotted as follows:
Range of linearity is from pCa 3 to 6
Let’s draw the graph eliminating non-linear values.
According to the linear regression analysis done in a spread sheet,
Slope = -0.0292
Intercept = 0.3119
This electrode obeys the equation 23-29 for higher Ca2+ activities.
(f)
Interpretation:
The reason for the term super-Nernstianto be used for electrode 2 should be discussed.
Concept introduction:
Electrode 2 has an inner solution with low activities of Ca2+.
Answer to Problem 23.27QAP
A super-Nernstian response is a result of an inward flux of ions which are to be analyzed.
Explanation of Solution
As a result of a super-Nernstian response, an inward flux of ions, Ca2+ in this case needed to be analyzed into the ion-selective membrane. In the diffusion layer, it decreases Ca2+ ions at the sample-membrane phase boundary. When there is low Ca2+ ions concentration, this super-Nernstian behavior usually takes place. It is usually experienced at concentrations at or below 1 × 10-6 M.
(g)
Interpretation:
The cell potential versus the pCa should be plotted and the range of linearity should be determined. For the linear portion, the slope and the intercept should be determined.
Concept introduction:
For cations,
Here,
K − constant
n − number of moles of electrons
X − activity of the cation.
Answer to Problem 23.27QAP
Range of linearity is between pCa 3 to 6
Slope = -0.0288
Intercept = 0.2636
The plot obeys the equation 23-29 at higher concentrations.
Explanation of Solution
Activity of Ca2+, M | pCa | Cell potential, V |
1.00E-03 | 3 | 1.75E-01 |
1.00E-04 | 4 | 1.50E-01 |
1.00E-05 | 5 | 1.23E-01 |
1.00E-06 | 6 | 8.80E-02 |
1.00E-07 | 7 | 7.50E-02 |
1.00E-08 | 8 | 7.20E-02 |
1.00E-09 | 9 | 7.10E-02 |
Range of linearity is between pCa 3 to 6.
Let’s draw the graph eliminating non-linear values.
According to the linear regression analysis done in a spread sheet,
Slope = -0.0288
Intercept = 0.2636
According to the equation 23.29,
Therefore, the plot obeys the equation 23-29 at higher concentrations.
(h)
Interpretation:
Electrode 3 is said to have Ca2+ release. This term should be explained.
Concept introduction:
Electrode 3 has an inner solution with higher activities of Ca2+.
Answer to Problem 23.27QAP
When the concentration of Ca2+ in the solution is too low than that of inner solution of the electrode, Ca2+ flux outward to the solution through diffusion.
Explanation of Solution
Ca2+ is a result of an outward flux of ions which are to be analyzed, in this case Ca2+ ions out of the ion-selective membrane. This results in increase of Ca2+ ions in the diffusion layer at the sample-membrane phase boundary. This Ca2+ release usually happens when there is a low concentration of Ca2+ ions in the solution to be analyzed.
(i)
Interpretation:
The alternative explanations for experimental results given in the article should be described.
Concept introduction:
An
Answer to Problem 23.27QAP
The reason for super-Nernstian response is that at low sample activities, the gradient required to maintain the membrane flux is no more negligible relative to the bulk. Ca2+ uptake is a result of the strong coextraction of Ca(NO3)2 into the membrane.
Explanation of Solution
The emf observed with ISE are a logarithmic function of the bulk sample activities. Deviation from this behavior can be explained either by activity change in the organic membrane surface layer or by differences between sample activities in the bulk and the membrane surface layer. Deviation are a result of ions release from or uptake to the membrane. These ion fluxes originate from concentration polarization within the membrane, asymmetrical ion exchange and coextraction reactions at both membrane sides.
The reason for super-Nernstian response is that at low sample activities, the gradient required to maintain the membrane flux is no more negligible relative to the bulk. Ca2+ uptake is a result of the strong coextraction of Ca(NO3)2 into the membrane.
Want to see more full solutions like this?
Chapter 23 Solutions
Principles of Instrumental Analysis
- The following cell was found to have a potential of —0.492 V: Ag|AgCl(sat’d)||HA(0.200 M),NaA(0.300 M)|H2(1.00 atm),Pt Calculate the dissociation constant of HA, neglecting the junction potential.arrow_forwardWhat is the cell potential of the following cell at 25C? Ni(s)Ni2+(1.0M)Sn2(1.5104M)Sn(s)arrow_forward(3) A nitrate -selective electrode and a reference electrode were dipped into a solution of nitrate with an activity of 1.00 x10 ³M, and the potential of the nitrate selective electrode was found to be -22.4 mV. The same electrode couple was then dipped into a solution containing nitrate and chloride each of which had an activity of 1.00 x 10³M. The potential of the nitrate- selective electrode in this solution was -124.8 mV. Th temperatures of both solutions were 25°C. Calculate the selectivity coefficient of the nitrate -selective electrode for chloride.arrow_forward
- In a moving boundary experiment with a 0.10 M aqueous solution of KCl, the boundary moves 4.64 cm during 67 min when the current is 5.21 mA. The cross-sectional area of the tube is 0.23 cm2. Calculate the transport number of the K+ ions. [0.49] The answer is written in the bracket, I would like to know how it is obtained. Thank you!arrow_forwarda) The selectivity coefficient for a Bromide ion-selective electrode is K Br,OH 0.15. What will the change in the electrode potential be for a 1.4 x 10 M Br at pH 5.5 if the pH is raised to pH 11.0? b) A pH probe is calibrated against pH 4 and pH 7 buffers. For pH 4 buffer, E = 200 mV and for pH 7 buffer, E = 23 mV. If the potential for an unknown solution is 157 mV, calculate the pH of the solution.arrow_forwardA solution prepared by mixing 60.0 mL of 0.360 M AGNO, and 60.0 mL of 0.360 M TINO, was titrated with 0.720 M NaBr in a cell containing a silver indicator electrode and a reference electrode with a constant potential of 0.175 V. The reference electrode is attached to the positive terminal of the potentiometer, and the silver electrode is attached to the negative terminal. The solubility constant of TIBr is Kp = 3.6 × 10-6 and the solubility constant of AgBr is = 5.0 x 10-13. Ksp Which precipitate forms first? O TIBI O AgBr Which of the expressions shows how the cell potential, E, depends on [Ag*]? E = 0.175 V – [0.799 V – 0.05916log ([Ag+])] 1 E = |0.799 V – 0.05916log - 0.175 V [Ag*) E = [0.799 V – 0.05916log ([Ag*]D] – 0.175 V E = 0.175 V - |0.799 V – 0.05916log [Ag* * (ল) Calculate the first and second equivalence points of the titration. first equivalence point: mL second equivalence point: mL What is the cell potential after each of the given volumes of 0.720 M NaBr have been…arrow_forward
- The equilibrium constant for the ion-pairing reaction Mg+(aq) + SO (aq) MgSO,(aq) %3D is Kion pair 1.70 x 10. Consider a 0.0320 F solution of MgSO. Using the calculated [Mg+] as a starting point, calculate the ionic strength of the solution. Look up the activity cocfficients for Mg and So- in this table, interpolating as necessary, and then caleulate the concentration of Mg+ in solution using activity coeflicients. The activity coefficient of the ion pair (yMuso. ) can be taken as unity (1) because the ion pair is neutral. Repeat this procedure until the concentration of Mg- between iterations is stable. What is the concentration of Mg?t when activity coefficients are used? [Mg"] = 0.4554 M What percentage of this solution is ion paired? 45.54 percentage ion puired: What is the ionic strength of this solution? The calculated concentration of Mg2+ is 0.011M. Please help with the three questions belowarrow_forwardA glass electrode with a SCE reference electrode is calibrated at 25 °C with a pH 4.00 standard buffer; the voltage was 0.855 V. What would be the voltage (in V) measured for a 1.00 x 102 M solution of acetic acid (K₁-1.75 × 10-5)? Remember that at 25 °C, the term (2.303RT/F) equals 0.05916.arrow_forwardCalibration of a glass electrode gave a reading of 139.3 mV with a 0.05 m potassium hydrogen phthalate buffer standard ( pH = 4.015), and a reading of -160.7 mV with a 0.01 m borax buffer standard (pH = 9.139), both measured at 30 °C. What is the observed slope (mV/pH unit) of the calibration curve? slope observed What is the theoretical slope at 30 °C? = slope theoretical pH : What is the pH of an unknown that gives a reading of 42.5 mV with this electrode at 30 °C? = = mV/pH mV/pHarrow_forward
- When an ion-selective electrode for X+ was immersed in 0.0362 M XC1, the measured potential was 0.0240 V. What is the concentration of X+ when the potential is 0.0390 V ? Assume that the electrode follows the Nernst equation, the temperature is at 25 °C, and that the activity coefficient of X+ is 1. [x+] = Marrow_forwardWhen an ion-selective electrode for X* was immersed in 0.0206 M XCI, the measured potential was 0.0230 V. What is the concentration of X* when the potential is 0.0380 V? Assume that the electrode follows the Nernst equation, the temperature is at 25 °C, and that the activity coefficient of X+ is 1. [x] =arrow_forwardCalculate the activity of La+3 and 103 in a saturated solution of La(103)3 in a) water, b) 0.010 M La(NO3)3 and c) 0.15 M AI(NO3)3. Calculate also the concentration constant, K'sp in each case. Kp = 1.0 x 10-11 sparrow_forward
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning