UNIVERSITY PHYSICS UCI PKG
11th Edition
ISBN: 9781323575208
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 23, Problem 23.10DQ
The potential difference between the two terminals of an AA battery (used in flashlights and portable stereos) is 1.5 V. If two AA batteries are placed end to end with the positive terminal of one battery touching the negative terminal of the other, what is the potential difference between the terminals at the exposed ends of the combination? What if the two positive terminals are touching each other? Explain your reasoning.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The potential difference between the two terminals of an AA battery (used in flashlights and portable stereos) is 1.5 V. If two AA batteries are placed end to end with the positive terminal of one battery touching the negative terminal of the other, what is the potential difference between the terminals at the exposed ends of the combination? What if the two positive terminals are touching each other? Explain your reasoning.
Three capacitors and a battery are connected as shown. The capacitance values are
C₁ = 8.1 μF, C₂ = 14.7 µF, and C3 = 7.3 μF. The battery voltage is Vo = 12 V.
Vo
C₁
C₂
C3
Enter an expression for the equivalent capacitance, C12, of the two capacitors C₁ and C₂ in terms of the variables given in the problem statement.
Using the result from Part (a), express the total equivalent capacitance, Ceq, in terms of C12 and C3.
Calculate the numeric value, in microfarads, of the total equivalent capacitance.
Express the charge, Q, stored in the circuit in terms of the equivalent capacitance, Ceq, and the potential difference across the battery, Vo.
Calculate the numeric value, in microcoulombs, of the charge stored in the circuit.
Express the energy stored in the capacitor in terms of the equivalent capacitance, Ceq, and the potential across the battery, Vo.
Calculate the numeric value, in microjoules, of the energy stored in the circuit.
Chapter 23 Solutions
UNIVERSITY PHYSICS UCI PKG
Ch. 23.1 - Consider the system of three point charges in...Ch. 23.2 - If the electric potential at a certain point is...Ch. 23.3 - If the electric field at a certain point is zero,...Ch. 23.4 - Would the shapes of the equipotential surfaces in...Ch. 23.5 - In a certain region of space the potential is...Ch. 23 - A student asked. Since electrical potential is...Ch. 23 - The potential (relative to a point at infinity)...Ch. 23 - Is it possible to have an arrangement of two point...Ch. 23 - Since potential can have any value you want...Ch. 23 - If E is zero everywhere along a certain path that...
Ch. 23 - If E is zero throughout a certain region of space,...Ch. 23 - Which way do electric field lines point, from high...Ch. 23 - (a) If the potential (relative to infinity) is...Ch. 23 - If you carry out the integral of the electric...Ch. 23 - The potential difference between the two terminals...Ch. 23 - It is easy to produce a potential difference of...Ch. 23 - If the electric potential at a single point is...Ch. 23 - Because electric field lines and equipotential...Ch. 23 - A uniform electric field is directed due east....Ch. 23 - We often say that if point A is at a higher...Ch. 23 - A conducting sphere is to be charged by bringing...Ch. 23 - In electronics it is customary to define the...Ch. 23 - A conducting sphere is placed between two charged...Ch. 23 - A conductor that carries a net charge Q has a...Ch. 23 - A high-voltage dc power line falls on a car, so...Ch. 23 - When a thunderstorm is approaching, sailors at sea...Ch. 23 - A positive point charge is placed near a very...Ch. 23 - A point charge q1 = +2.40 C is held stationary at...Ch. 23 - A point charge q1 is held stationary at the...Ch. 23 - Energy of the Nucleus. How much work is needed to...Ch. 23 - (a) How much work would it take to push two...Ch. 23 - A small metal sphere, carrying a net charge of q1...Ch. 23 - BIO Energy of DNA Base Pairing. (See Exercise...Ch. 23 - Two protons, starting several meters apart, are...Ch. 23 - Three equal 1.20-C point charges are placed at the...Ch. 23 - Two protons are released from rest when they are...Ch. 23 - Four electrons are located at the corners of a...Ch. 23 - Three point charges, which initially are...Ch. 23 - An object with charge q = 6.00 109 C is placed in...Ch. 23 - A small particle has charge 5.00 C and mass 2.00 ...Ch. 23 - A particle with charge +4.20 nC is in a uniform...Ch. 23 - A charge of 28.0 nC is placed in a uniform...Ch. 23 - Two stationary point charges +3.00 nC and +2.00 nC...Ch. 23 - Point charges q1 = + 2.00 C and q2 = 2.00 C are...Ch. 23 - Two point charges of equal magnitude Q are held a...Ch. 23 - Two point charges q1 = +2.40 nC and q2 = 6.50 nC...Ch. 23 - (a) An electron is to be accelerated from 3.00 ...Ch. 23 - A positive charge q is fixed at the point x = 0, y...Ch. 23 - At a certain distance from a point charge, the...Ch. 23 - A uniform electric field has magnitude E and is...Ch. 23 - For each of the following arrangements of two...Ch. 23 - A thin spherical shell with radius R1 = 3.00 cm is...Ch. 23 - A total electric charge of 3.50 nC is distributed...Ch. 23 - A uniformly charged, thin ring has radius 15.0 cm...Ch. 23 - A solid conducting sphere has net positive charge...Ch. 23 - Charge Q = 5.00 C is distributed uniformly over...Ch. 23 - An infinitely long line of charge has linear...Ch. 23 - A very long wire carries a uniform linear charge...Ch. 23 - A very long insulating cylinder of charge of...Ch. 23 - A very long insulating cylindrical shell of radius...Ch. 23 - A ring of diameter 8.00 cm is fixed in place and...Ch. 23 - A very small sphere with positive charge q = +...Ch. 23 - CP Two large, parallel conducting plates carrying...Ch. 23 - Two large, parallel, metal plates carry opposite...Ch. 23 - BIO Electrical Sensitivity of Sharks. Certain...Ch. 23 - The electric field at the surface of a charged,...Ch. 23 - (a) How much excess charge must be placed on a...Ch. 23 - CALC A metal sphere with radius ra is supported on...Ch. 23 - A very large plastic sheet carries a uniform...Ch. 23 - CALC In a certain region of space, the electric...Ch. 23 - CALC In a certain region of space the electric...Ch. 23 - A metal sphere with radius ra = 1.20 cm is...Ch. 23 - CP A point charge q1, = +5.00 C is held fixed in...Ch. 23 - A point charge q1 = 4.00 nC is placed at the...Ch. 23 - A positive point charge q1 = +5.00 104 C is held...Ch. 23 - A gold nucleus has a radius of 7.3 1015 m and a...Ch. 23 - A small sphere with mass 5.00 107 kg and charge...Ch. 23 - Determining the Size of the Nucleus. When...Ch. 23 - CP A proton and an alpha particle are released...Ch. 23 - A particle with charge +7.60 nC is in a uniform...Ch. 23 - Identical charges q = +5.00 C are placed at...Ch. 23 - CALC A vacuum tube diode consists of concentric...Ch. 23 - Two oppositely charged, identical insulating...Ch. 23 - An Ionic Crystal. Figure P23.57 shows eight point...Ch. 23 - (a) Calculate the potential energy of a system of...Ch. 23 - CP A small sphere with mass 1.50 g hangs by a...Ch. 23 - Two spherical shells have a common center. The...Ch. 23 - CALC Coaxial Cylinders. A long metal cylinder with...Ch. 23 - A Geiger counter detects radiation such as alpha...Ch. 23 - CP Deflection in a CRT. Cathode-ray tubes (CRTs)...Ch. 23 - CP Deflecting Plates of an Oscilloscope. The...Ch. 23 - Electrostatic precipitators use electric forces to...Ch. 23 - CALC A disk with radius R has uniform surface...Ch. 23 - CALC Self-Energy of a Sphere of Charge. A solid...Ch. 23 - CALC A thin insulating rod is bent into a...Ch. 23 - Charge Q = +4.00 C is distributed uniformly over...Ch. 23 - An insulating spherical shell with inner radius...Ch. 23 - CP Two plastic spheres, each carrying charge...Ch. 23 - (a) If a spherical raindrop of radius 0.650 mm...Ch. 23 - CALC Electric charge is distributed uniformly...Ch. 23 - An alpha particle with kinetic energy 9.50 MeV...Ch. 23 - Two metal spheres of different sizes are charged...Ch. 23 - A metal sphere with radius R1 has a charge Q1....Ch. 23 - Prob. 23.77PCh. 23 - CALC The electric potential V in a region of space...Ch. 23 - DATA The electric potential in a region that is...Ch. 23 - DATA A small, stationary sphere carries a net...Ch. 23 - DATA The Millikan Oil-Drop Experiment. The charge...Ch. 23 - CALC A hollow, thin-walled insulating cylinder of...Ch. 23 - CP In experiments in which atomic nuclei collide,...Ch. 23 - For a particular experiment, helium ions are to be...Ch. 23 - A helium ion (He++) that comes within about 10 fm...Ch. 23 - The maximum voltage at the center of a typical...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
the angular frequency of offshore turbine (ω2) .
College Physics: A Strategic Approach (3rd Edition)
54. A +3.0 nC charge is at x = 0 cm and a –1.0 nC charge is at x = 4 cm. At what point or points on the x-axis ...
College Physics: A Strategic Approach (4th Edition)
39. A transformer for a laptop computer converts a 120-V input to a 24-V output. Show that the primary coil has...
Conceptual Physical Science (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A pair of capacitors with capacitances CA = 3.70 F and CB = 6.40 F are connected in a network. What is the equivalent capacitance of the pair of capacitors if they are connected a. in parallel and b. in series?arrow_forwardThe network of capacitors shown below are all uncharged when a 300-V potential is applied between points A and B with the switch S open, (a) What is the Potential difference VE-VD? (b) What is the potential at point E after the switch is closed? (c) How much charge flows through the switch after it is closed?arrow_forwardA Pairs of parallel wires or coaxial cables are two conductors separated by an insulator, so they have a capacitance. For a given cable, the capacitance is independent of the length if the cable is very long. A typical circuit model of a cable is shown in Figure P27.87. It is called a lumped-parameter model and represents how a unit length of the cable behaves. Find the equivalent capacitance of a. one unit length (Fig. P27.87A), b. two unit lengths (Fig. P27.87B), and c. an infinite number of unit lengths (Fig. P27.87C). Hint: For the infinite number of units, adding one more unit at the beginning does not change the equivalent capacitance.arrow_forward
- Four parallel metal plates P1, P2, P3, and P4, each of area 7.50 cm2, are separated successively by a distance d = 1.19 mm as shown in Figure P25.34. Plate P1 is connected to the negative terminal of a battery, and P2 is connected to the positive terminal. The battery maintains a potential difference of 12.0 V. (a) If P3 is connected to the negative terminal, what is the capacitance of the three-plate system P1P2P3? (b) What is the charge on P2? (c) If P4 is now connected to the positive terminal, what is the capacitance of the four-plate system P1P2P3P4? (d) What is the charge on P4?arrow_forwardGiven the arrangement of capacitors in Figure P27.23, find an expression for the equivalent capacitance between points a and b. Figure P27.23 Problems 23 and 24.arrow_forwardConsider the circuit shown in Figure P20.52, where C1 = 6.00 F, C2 = 3.00 F, and V = 20.0 V. Capacitor C1 is first charged by closing switch S1. Switch S1 is then opened, and the charged capacitor is connected to the uncharged capacitor by closing S2. Calculate (a) the initial charge acquired by C1 and (b) the final charge on each capacitor. Figure P20.52arrow_forward
- A capacitor stores charge Q at a potential difference V. What happens if the voltage applied to a capacitor by a battery is doubled to 2 V? (a) The capacitance falls to half its initial value, and the charge remains the same. (b) The capacitance and the charge both fall to half their initial values. (c) The capacitance and the charge both double. (d) The capacitance remains the same, and the charge doubles.arrow_forwardA parallel-plate capacitor is connected to a battery. What happens to the stored energy if the plate separation is doubled while the capacitor remains connected to the battery? (a) It remains the same. (b) It is doubled. (c) It decreases by a factor of 2. (d) It decreases by a factor of 4. (e) It increases by a factor of 4.arrow_forwardThree capacitors having capacitances 8.4, 8.4, and 4.2 F are connected in series across a 36.0-V potential difference, (a) What is the total energy stored in all three capacitors? (b) The capacitors are disconnected from the potential difference without allowing them to discharge. They are then reconnected in parallel with each other with the positively charged plates connected together. What is the total energy now stored in the capacitors?arrow_forward
- (a) Find the equivalent capacitance between points a and b for the group of capacitors connected as shown in Figure P20.44. Take C1 = 5.00 F, C2 = 10.0 F, and C3 = 2.00 F. (b) What charge is stored on C3 if the potential difference between points a and b is 60.0 V? Figure P20.44arrow_forwardA large parallel-plate capacitor is attached to a battery that has terminal potential (Fig. 27.15A). After a period of time, the capacitor stores charge Q so that its top plate is positive and its bottom plate is negative, and the potential difference between the plates is VC = . An I-shaped neutral conductor consisting of two parallel plates connected by a wire is slipped between the plates of the capacitor so that all four plates are parallel (Fig. 27.15B). What are the charges q1, and q2 on the plates of the I-shaped conductor? What is the potential difference VC between the top and bottom plates of the capacitor?arrow_forwardTwo capacitors, C1 = 18.0 F and C2 = 36.0 F, are connected in series, and a 12.0-V battery is connected across the two capacitors. Find (a) the equivalent capacitance and (b) the energy stored in this equivalent capacitance. (c) Find the energy stored in each individual capacitor. (d) Show that the sum of these two energies is the same as the energy found in part (b). (e) Will this equality always be true, or docs it depend on the number of capacitors and their capacitances? (f) If the same capacitors were connected in parallel, what potential difference would be required across them so that the combination stores the same energy as in part (a)? (g) Which capacitor stores more energy in this situation, C1 or C2?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY