a)
Interpretation:
Using an alkylation reaction as the key step how the compound shown can be prepared is to be given.
Concept introduction:
An alkylation reaction is used to introduce a methyl or a primary alkyl group in α- position of aTo give:
Using an alkylation reaction as the key step how to prepare the compound shown.
b)
Interpretation:
Using an alkylation reaction as the key step how the compound shown can be prepared.
Concept introduction:
An alkylation reaction is used to introduce a methyl or a primary alkyl group in α- position of a ketone, ester or nitrile by a SN2 reaction of the enolate ion with an alkyl halide. Thus by looking at α- carbon of the product the alkyl halide to be used in the reaction can be identified. The enolate ion can be produced by using lithium diisopropylamide (LDA).
To give:
Using an alkylation reaction as the key step how to prepare the compound shown.
c)
Interpretation:
Using an alkylation reaction as the key step how the compound shown can be prepared.
Concept introduction:
An alkylation reaction is used to introduce a methyl or a primary alkyl group in α- position of a ketone, ester or nitrile by aSN2reaction of the enolate ion with an alkyl halide. Thus by looking at α- carbon of the product the alkyl halide to be used in the reaction can be identified. The enolate ion can be produced by using lithium diisopropylamide (LDA).
To give:
Using an alkylation reaction as the key step how to prepare the compound shown.
d)
Interpretation:
Using an alkylation reaction as the key step how the compound shown can be prepared.
Concept introduction:
An alkylation reaction is used to introduce a methyl or a primary alkyl group in α- position of a ketone, ester or nitrile by a SN2 reaction of the enolate ion with an alkyl halide. Thus by looking at α- carbon of the product the alkyl halide to be used in the reaction can be identified. The enolate ion can be produced by using lithium diisopropylamide (LDA).
To give:
Using an alkylation reaction as the key step how to prepare the compound shown.
e)
Interpretation:
Using an alkylation reaction as the key step how the compound shown can be prepared.
Concept introduction:
An alkylation reaction is used to introduce a methyl or a primary alkyl group in α- position of a ketone, ester or nitrile by a SN2 reaction of the enolate ion with an alkyl halide. Thus by looking at α- carbon of the product the alkyl halide to be used in the reaction can be identified. The enolate ion can be produced by using lithium diisopropylamide (LDA).
To give:
Using an alkylation reaction as the key step how to prepare the compound shown.
f)
Interpretation:
Using an alkylation reaction as the key step how the compound shown can be prepared.
Concept introduction:
An alkylation reaction is used to introduce a methyl or a primary alkyl group in α- position of a ketone, ester or nitrile by a SN2 reaction of the enolate ion with an alkyl halide. Thus by looking at α- carbon of the product the alkyl halide to be used in the reaction can be identified. The enolate ion can be produced by using lithium diisopropylamide (LDA).
To give:
Using an alkylation reaction as the key step how to prepare the compound shown.
Want to see the full answer?
Check out a sample textbook solutionChapter 22 Solutions
EBK ORGANIC CHEMISTRY
- Q4. Radicals a. For the following indicated bonds, rank them in order of decreasing AH° for homolytic cleavage. Based on your answer, which bond would be most likely to break homolytically? (c) CH3 CH3 H3C CH3 (a) CH3 (b)arrow_forwardQ1. (a) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH3. Use curved arrows to show the electron movement. (b) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH4*. Use curved arrows to show the electron movement.arrow_forwardohing Quantitative Relationships 425 The specific heats and atomic masses of 20 of the elements are given in the table below. Use a graphical method to determine if there is a relationship between specific heat and the atomic mass. a. b. C. d. e. If your graphs revealed relationship between specific heat and atomic revealed a mathematical mass, write down an equation for the relationship. Comment on the usefulness of the determination of specific heat as a method for identifying an element. Would specific heat alone give you much confidence with regard to the identity of the element? If you think measurement of another property would be needed to support an identification, what property would you measure and why? The elements listed in the table are all selected metals. The values for nitrogen, oxygen, fluorine and neon are 1.040, 0.918, 0.824 and 1.030 J/g K respectively. Do these elements fit your equation? element atomic mass specific heat (almol) (Jig K) magnesium 24.305 1.023…arrow_forward
- Please correct answer and don't use hand ratingarrow_forwardNonearrow_forwardDraw Newman projects for each of the following molecules with 3 different rotational angles from carbon 2 to carbon 3. Rank your structures from lowest to highest energy. What causes the energy differences? Label the overlap. a. b. Br OH C. Br Brarrow_forward
- Draw the stereoisomers of 3,5-diethylcylopentane. Identify the different relationships between each molecules (diasteromers, enantiomers, meso compounds, etc.)arrow_forwardPlease correct answer and don't use hand ratingarrow_forwardPlease correct answer and don't use hand rating and don't use Ai solutionarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning