Interpretation:
Given that 2-substituted-2-cyclopentenones are in a base catalyzed equilibrium with their 5-substituted-2-cyclopentenone isomers. Why such analogous isomerization is not observed for 2-substituted -2-cyclohexenones is to be explained.
Concept introduction:
The isomerization of cycloalkenones occurs through an enolate anion formed by the abstraction of acidic hydrogen by the base. Hydrogens on carbon α- to a carbonyl group and those on γ- carbon in a conjugated enone are acidic. If these hydrogens are removed, isomerization will occur. Otherwise isomerization is not possible.
To explain:
Why 2-substituted -2-cyclohexenones are not in a base catalyzed equilibrium with their 6-substituted -2-cyclohexenone isomers like 2-substituted-2-cyclopentenones.
Want to see the full answer?
Check out a sample textbook solutionChapter 22 Solutions
EBK ORGANIC CHEMISTRY
- A DEPT NMR spectrum is shown for a molecule with the molecular formula of C5H12O. Draw the structure that best fits this data. 200 180 160 140 120 100 一盆 00 40 8- 20 ppm 0 Qarrow_forwardDon't used hand raitingarrow_forwardShown below is the major resonance structure for a molecule. Draw the second best resonance structure of the molecule. Include all non-zero formal charges. H. H. +N=C H H H Cl: Click and drag to start drawing a structure. : ? g B S olo Ar B Karrow_forward
- Don't used hand raitingarrow_forwardS Shown below is the major resonance structure for a molecule. Draw the second best resonance structure of the molecule. Include all non-zero formal charges. H H = HIN: H C. :0 H /\ H H Click and drag to start drawing a structure. ×arrow_forwardPlease help me figure out these calculation and what should be plotted. These are notes for my chemistry class.arrow_forward
- Nonearrow_forwardNonearrow_forwardPart II. two unbranched ketone have molecular formulla (C8H100). El-ms showed that both of them have a molecular ion peak at m/2 =128. However ketone (A) has a fragment peak at m/2 = 99 and 72 while ketone (B) snowed a fragment peak at m/2 = 113 and 58. 9) Propose the most plausible structures for both ketones b) Explain how you arrived at your conclusion by drawing the Structures of the distinguishing fragments for each ketone, including their fragmentation mechanisms.arrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning