Concept explainers
(a)
Interpretation: The formula of the given ions or compounds has to be determined.
Concept introduction:
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.
Ligands: The ions or molecules that forms coordination covalent bond with metal ions in a coordination compound. Ligands should have minimum one lone pair of electron, where it donates two electrons to the metal. Metal atom accepts the electron pair from a ligand forming a coordination bond.
Monodentate ligand is ligands which donate only one pair of electrons to form bond with metal. It only makes one bond with metal. Polydentate ligand forms two or more coordination bond with metal ions to form a complex.
Oxidation number: The total number of electrons in an atom after losing or gaining electrons to make a bond with another atom. It indicates the charge of an ion.
The rule to name a coordination complex is,
- 1. The cation is named before the anion.
- 2. Within a complex ion, the Ligands are arranged in an alphabetical order followed by the metal ion name. The anionic Ligand should ends with a letter –o, the neutral Ligand are called by the molecules (some common name for some exception).
- 3. When more Ligands are present, Greek prefixes like di, tri, tetra, penta, and hexa to specify their number.
- 4. The oxidation number of the metal is represented in roman numerals immediately following the metal ion name.
- 5. If the complex ion is an anion, the metal name should end with –ate.
Spectrochemical series: The list of ligands arranged in an ascending order of
(a)
Answer to Problem 28PS
The formula is
Explanation of Solution
The oxidation state of central metal atom
The ligands can be written as,
According to spectrochemical series,
The formula is
The oxidation state is,
The charge of the complex is,
The complex is neutral
Therefore,
The formula of the complex is,
(b)
Interpretation: The formula of the given ions or compounds has to be determined.
Concept introduction:
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.
Ligands: The ions or molecules that forms coordination covalent bond with metal ions in a coordination compound. Ligands should have minimum one lone pair of electron, where it donates two electrons to the metal. Metal atom accepts the electron pair from a ligand forming a coordination bond.
Monodentate ligand is ligands which donate only one pair of electrons to form bond with metal. It only makes one bond with metal. Polydentate ligand forms two or more coordination bond with metal ions to form a complex.
Oxidation number: The total number of electrons in an atom after losing or gaining electrons to make a bond with another atom. It indicates the charge of an ion.
The rule to name a coordination complex is,
- 1. The cation is named before the anion.
- 2. Within a complex ion, the Ligands are arranged in an alphabetical order followed by the metal ion name. The anionic Ligand should ends with a letter –o, the neutral Ligand are called by the molecules (some common name for some exception).
- 3. When more Ligands are present, Greek prefixes like di, tri, tetra, penta, and hexa to specify their number.
- 4. The oxidation number of the metal is represented in roman numerals immediately following the metal ion name.
- 5. If the complex ion is an anion, the metal name should end with –ate.
Spectrochemical series: The list of ligands arranged in an ascending order of
(b)
Answer to Problem 28PS
The formula of the given ions is
Explanation of Solution
The oxidation state of central metal atom
The ligands can be written as,
According to spectrochemical series,
The formula is
The oxidation state is,
The charge of the complex is,
The complex is neutral
Therefore,
The formula of the complex is,
(c)
Interpretation: The formula of the given ions or compounds has to be determined.
Concept introduction:
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.
Ligands: The ions or molecules that forms coordination covalent bond with metal ions in a coordination compound. Ligands should have minimum one lone pair of electron, where it donates two electrons to the metal. Metal atom accepts the electron pair from a ligand forming a coordination bond.
Monodentate ligand is ligands which donate only one pair of electrons to form bond with metal. It only makes one bond with metal. Polydentate ligand forms two or more coordination bond with metal ions to form a complex.
Oxidation number: The total number of electrons in an atom after losing or gaining electrons to make a bond with another atom. It indicates the charge of an ion.
The rule to name a coordination complex is,
- 1. The cation is named before the anion.
- 2. Within a complex ion, the Ligands are arranged in an alphabetical order followed by the metal ion name. The anionic Ligand should ends with a letter –o, the neutral Ligand are called by the molecules (some common name for some exception).
- 3. When more Ligands are present, Greek prefixes like di, tri, tetra, penta, and hexa to specify their number.
- 4. The oxidation number of the metal is represented in roman numerals immediately following the metal ion name.
- 5. If the complex ion is an anion, the metal name should end with –ate.
Spectrochemical series: The list of ligands arranged in an ascending order of
(c)
Answer to Problem 28PS
The formula of the given ions is
Explanation of Solution
The oxidation state of central metal atom
The ligands can be written as,
The oxidation state is,
The charge of the complex is zero
Therefore,
The formula of the complex is,
(d)
Interpretation: The formula of the given ions or compounds has to be determined.
Concept introduction:
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.
Ligands: The ions or molecules that forms coordination covalent bond with metal ions in a coordination compound. Ligands should have minimum one lone pair of electron, where it donates two electrons to the metal. Metal atom accepts the electron pair from a ligand forming a coordination bond.
Monodentate ligand is ligands which donate only one pair of electrons to form bond with metal. It only makes one bond with metal. Polydentate ligand forms two or more coordination bond with metal ions to form a complex.
Oxidation number: The total number of electrons in an atom after losing or gaining electrons to make a bond with another atom. It indicates the charge of an ion.
The rule to name a coordination complex is,
- 1. The cation is named before the anion.
- 2. Within a complex ion, the Ligands are arranged in an alphabetical order followed by the metal ion name. The anionic Ligand should ends with a letter –o, the neutral Ligand are called by the molecules (some common name for some exception).
- 3. When more Ligands are present, Greek prefixes like di, tri, tetra, penta, and hexa to specify their number.
- 4. The oxidation number of the metal is represented in roman numerals immediately following the metal ion name.
- 5. If the complex ion is an anion, the metal name should end with –ate.
Spectrochemical series: The list of ligands arranged in an ascending order of
(d)
Answer to Problem 28PS
The formula of the given ions is
Explanation of Solution
The oxidation state of central metal atom
The ligands can be written as,
According to spectrochemical series,
The formula is
The oxidation state is,
The charge of the complex is,
The complex is neutral
Therefore,
The formula of the complex is,
Want to see more full solutions like this?
Chapter 22 Solutions
Chemistry & Chemical Reactivity
- Four different octahedral chromium coordination compounds exist that all have the same oxidation state for chromium and have H2O and Cl as the ligands and counterions. When 1 mole of each of the four compounds is dissolved in water, how many moles of silver chloride will precipitate upon addition of excess AgNO3?arrow_forwardPlatinum(II) forms many complexes, among them those with the following ligands. Give the formula and charge of each complex. (a) two ammonia molecules and one oxalate ion (C2O42-) (b) two ammonia molecules, one thiocyanate ion (SCN-), and one bromide ion (c) one ethylenediamine molecule and two nitrite ionsarrow_forwardThe complex ion [Co(CO3)3]3-, an octahedral complex with bidentate carbonate ions as ligands, has one absorption in the visible region of the spectrum at 640 nm. From this information, (a) Predict the color of this complex and explain your reasoning. (b) Is the carbonate ion a weak- or strong-field ligand? (c) Predict whether [Co(CO3)3]3- will be paramagnetic or diamagnetic.arrow_forward
- . Give the chemical formula that corresponds to each of the following compounds:(a) Sodium tetrahydroxozincate(II)(b) Dichlorobis(ethylenediamine)cobalt(III) nitrate(c) Triaquabromoplatinum(II) chloride(d) Tetra-amminedinitroplatinum(IV) bromidearrow_forwardThe molecule dimethylphosphinoethane [(CH3)2PCH2CH2P(CH3)2, which is abbreviated dmpe] is used as a ligandfor some complexes that serve as catalysts. A complex thatcontains this ligand is Mo(CO)4(dmpe). (a) Draw the Lewisstructure for dmpe, and compare it with ethylenediamine asa coordinating ligand. (b) What is the oxidation state of Moin Na2[Mo(CN)2(CO)2(dmpe)]? (c) Sketch the structure ofthe [Mo(CN)2(CO)2(dmpe)]2- ion, including all the possibleisomers.arrow_forward(a) A complex containing three pyridine and three ammonia ligands bound to a Ni(II) ion was found to have C3v symmetry. Draw and name the complex. (b) Describe the advantages of molecular orbital theory over Lewis models to describe diatomic species. (c) [Ni(II)Br4]2- is a tetrahedral complex while [Ni(II)(CN)4]2− is square-planar. Explain the reasons for the different coordination geometries in these two species.arrow_forward
- 3a) The nitrosyl ion, NO*, is a very rare case of a cationic ligand that can function as a Lewis base. Draw the Lewis structure of this ligand under consideration of the VSEPR rules and indicate any formal charges on the constituent atoms. 3b) How many electrons does the NO* ligand contribute on the ionic model and the neutral model, respectively? Assume that the Metal-N-O bonding angle is 180° upon coordination.arrow_forwardFor the complex [Fe(en)2Cl2]Cl, identify the following: (i) Oxidation number of iron. (ii) Hybrid orbitals and shape of the complex. (iii) Magnetic behaviour of the complex. (iv) Number of its geometrical isomers. (v) Whether there may be optical isomer also. (vi) Name of the complex.arrow_forwardSome octahedral complexes have distorted shapes. Insome, two metal-ligand bonds that are 180° apart are shorter than the other four. In [Cu(NH₃)₆]²⁺, for example, two Cu−N bonds are 207 pm long, and the other four are 262 pm long. (a) Calculate the longest distance between two N atoms in this complex. (b) Calculate the shortest distance between two N atoms.arrow_forward
- A coordination compound has the following composition (by mass %): 23.53% Co; 42.47% Cl, and 34.00% NH3. When 4.91 g of the compound is dissolved in 75.0 mL of deionized water, and the solution is reacted with an excess of AGNO; solution, it yields 5.60 g of AgCl precipitate. (a) Determine the empirical formula of the compound and write in the form of Co(NH;),Cl, (where x and 24. y are simple integers), and calculate its molar mass. (Assume the compound contains only one Co atom). (b) Deduce the number of chloride (Cl) as counter ions and as ligand, respectively. (c) Write the Werner's formula of the compound and give its systematic name. (Answers: (a) Co(NH3);C13; molar mass = 250.43 g/mol; (b) 2 Cl are counter ions and one is ligand; (c) [Co(NH3);CI]Cl2 = pentaammonechlorocobalt(III) chloride)arrow_forward[Cu (NH3) 4] SO4.H2O Describe the geometric structure of the compound with VBT by writing the electron configuration of copper.arrow_forwardA complex ion is formed from one Fe*, two CN and four NO, ions. (a) What is the structural formula and name of the complex ion? (b) Identify the type of isomerism and draw the isomer structures exhibited by the complex ion. (c) Draw the molecular orbital diagram and calculate the CFSE for the complex ion.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning