(a)
Interpretation: The empirical formula and the molecular formula of the given helicene are to be calculated. The balanced
Concept introduction: Helicines are defined as the polycyclic
To determine: The empirical formula of the given helicene.
(a)
Answer to Problem 174IP
Answer
The empirical formula of the given helicene is
Explanation of Solution
Explanation
The empirical formula of the given helicene is
Helicene is an aromatic compound so it must contain carbon and hydrogen atoms.
Given
Weight of
Weight of compound is
The weight of carbon is calculated by using the formula,
The molar mass of carbon is
The molar mass of carbon dioxide is
Substitute the value of weight of
The weight of carbon is
Therefore the weight of hydrogen is calculated as,
Therefore the number of moles of carbon and hydrogen is calculated by the formula,
Substitute the value of the given mass and the molar mass, to calculate the number of moles of carbon and hydrogen in the above equation.
For carbon,
For hydrogen,
The calculated values are divided by the smallest number of moles to determine the simplest whole number ratio of moles of each constituent.
For carbon
For hydrogen
By multiplying each with 3 we get the whole number as,
For carbon
For hydrogen
Hence, the empirical formula of the compound is
(b)
Interpretation: The empirical formula and the molecular formula of the given helicene are to be calculated. The balanced chemical reaction for the combustion of helicene is to be stated.
Concept introduction: Helicines are defined as the polycyclic aromatic compounds in which the aromatic ring is annulated to provide helically shaped molecule. The molecular formula of any organic compound is determined by using empirical formula when the percent of each element is given in the compound.
To determine: The molecular formula of the given helicene.
(b)
Answer to Problem 174IP
Answer
The molecular formula of the given helicene is
Explanation of Solution
Explanation
The molecular formula of the given helicene is
Given
Molality is
Weight of solvent is
Weight of solute is
Therefore the molecular weight of solute is calculated by the given expression.
Substitute the values of weight of solute, molality and weight of solvent in the above expression.
Now, The empirical mass of
Substitute the value of molecular and empirical weight in the above expression.
Therefore the molecular formula is calculated as,
Hence, the molecular formula is
(c)
Interpretation: The empirical formula and the molecular formula of the given helicene are to be calculated. The balanced chemical reaction for the combustion of helicene is to be stated.
Concept introduction: Helicines are defined as the polycyclic aromatic compounds in which the aromatic ring is annulated to provide helically shaped molecule. The molecular formula of any organic compound is determined by using empirical formula when the percent of each element is given in the compound.
To determine: The balanced chemical reaction for the combustion of helicene.
(c)
Answer to Problem 174IP
Answer
The balanced chemical reaction for the combustion of helicene is,
Explanation of Solution
Explanation
The balanced chemical reaction for the combustion of helicene is shown below.
The balanced reaction for the combustion of helicene is,
Want to see more full solutions like this?
Chapter 22 Solutions
Bundle: Chemistry, Loose-leaf Version, 10th + Enhanced Webassign Printed Access Card For Chemistry, Multi-term Courses
- Please correct answer and don't use hand ratingarrow_forwardWavelength (nm) I'm not sure what equation I can come up with other than the one generated with my graph. Can you please show me the calculations that were used to find this equation? Give an equation that relates energy to wavelength. Explain how you arrived at your equation. Wavelength Energy (kJ/mol) (nm) 350 341.8 420 284.8 470 254.5 530 225.7 580 206.3 620 192.9 700 170.9 750 159.5 Energy vs. Wavelength (Graph 1) 400 350 y=-0.4367x+470.82 300 250 200 150 100 50 O 0 100 200 300 400 500 600 700 800 Energy (kJ/mol)arrow_forward6. For the following molecules: draw Lewis dot-structures; use VSEPR method to determine geometries of the following molecules/ions. Are the central atoms in these molecules/ions considered of normal valency, or are they hypervalent? (please read paragraph 2.6) a) BrF3 (6 points) b) BrF4 c) IF₂ 4arrow_forward
- Nonearrow_forward7. Use Pauling's electronegativity values (Table 1.7) and Ketelaar triangle (Fig. 2.28) to classify bonding in: (3 points) a) CIF3 b) ZnCl2 c) PbSarrow_forward7. What is the IUPAC name of the following compound? A) (R)-1-oxo-2-butanol C) (R)-2-hydroxybutanal E) (S)-1-formyl-1-propanol B) (S)-1-oxo-2-butanol D) (S)-2-hydroxybutanal OH Harrow_forward
- Cual es la formula semidesarrollada del 3-metil-1-butino?arrow_forward2. A graph shown below shows first ionization energies for elements from H to Ne. First ionization energy/kJ mol 2500 2000 1500 1000 500 T T T T 1 2 3 5 6 7 8 9 10 Atomic number a) Using arguments of electronic structure, explain why ionization energy of Li is much lower than that of H. (2 points) then dips at O. b) Using the same arguments, explain why ionization energy increases from B to N, and (3 points)arrow_forwardGive the name of this compound, including stereochemistry if relevant: CICH2 CH3 Br CH₂CH=CH2 Write in the product, including stereochemistry where relevant, for these reactions. See end of ch. 8, p. 301-303. 1. 03 a) 2-methyl-2-pentene -> 2. Zn, H* Br2 b) 1-ethylcyclopentene -->arrow_forward
- Nonearrow_forward3. You may want to read paragraph 1.5 in your textbook before answering this question. Give electron configuration (short-hand notation is fine) for: (5 points) 3+ a) Manganese atom and Mn³+ b) Se atom c) Cu atom and Cu+arrow_forwardPlease correct answer and don't use hand ratingarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning