Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 21.2, Problem 21.2QQ
The energy entering an electric heater by electrical transmission can be converted to internal energy with an efficiency of 100%. By what factor does the cost of heating your home change when you replace your electric heating system with an electric heat pump that has a COP of 4.00? Assume the motor running the heat pump is 100% efficient. (a) 4.00 (b) 2.00 (c) 0.500 (d) 0.250
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The energy entering an electric heater by electrical transmission can be converted to internal energy with an efficiency of 100%. By what factor does the cost of heating your home change when you replace your electric heating system with an electric heat pump that has a COP of 3.50? Assume that the motor running the heat pump is 100% efficient.
help.
Many decisions are made on the basis of the payback period: the time it will take through savings to equal the capital cost of an investment. Acceptable payback times depend upon the business or philosophy one has. (For some industries, a payback period is as small as two years.) Suppose you wish to install the extra insulation. If energy cost $1.00 per million joules and the insulation was $4.00 per square meter, then calculate the simple payback time. Take the average for the 120 day heating season to be 15.0C.
Chapter 21 Solutions
Physics for Scientists and Engineers
Ch. 21.1 - The energy input to an engine is 4.00 times...Ch. 21.2 - The energy entering an electric heater by...Ch. 21.4 - Three engines operate between reservoirs separated...Ch. 21.6 - (a) Suppose you select four cards at random from a...Ch. 21.7 - An ideal gas is taken from an initial temperature...Ch. 21.7 - True or False: The entropy change in an adiabatic...Ch. 21 - A particular heat engine has a mechanical power...Ch. 21 - The work done by an engine equals one-fourth the...Ch. 21 - Suppose a heat engine is connected to two energy...Ch. 21 - During each cycle, a refrigerator ejects 625 kJ of...
Ch. 21 - A freezer has a coefficient of performance of...Ch. 21 - A heat pump has a coefficient of performance equal...Ch. 21 - One of the most efficient heat engines ever built...Ch. 21 - Why is the following situation impossible? An...Ch. 21 - If a 35.0% -efficient Carnot heat engine (Fig....Ch. 21 - An ideal refrigerator or ideal heat pump is...Ch. 21 - A heat engine is being designed to have a Carnot...Ch. 21 - A power plant operates at a 32.0% efficiency...Ch. 21 - You are working on a summer job at a company that...Ch. 21 - A Carnot heat engine operates between temperatures...Ch. 21 - An electric generating station is designed to have...Ch. 21 - Suppose you build a two-engine device with the...Ch. 21 - A heat pump used for heating shown in Figure...Ch. 21 - A gasoline engine has a compression ratio of 6.00....Ch. 21 - An idealized diesel engine operates in a cycle...Ch. 21 - (a) Prepare a table like Table 21.1 for the...Ch. 21 - Prob. 21PCh. 21 - A Styrofoam cup holding 125 g of hot water at 100C...Ch. 21 - A 1 500-kg car is moving at 20.0 m/s. The driver...Ch. 21 - A 2.00-L container has a center partition that...Ch. 21 - Calculate the change in entropy of 250 g of water...Ch. 21 - What change in entropy occurs when a 27.9-g ice...Ch. 21 - When an aluminum bar is connected between a hot...Ch. 21 - When a metal bar is connected between a hot...Ch. 21 - How fast are you personally making the entropy of...Ch. 21 - Prob. 30APCh. 21 - The energy absorbed by an engine is three times...Ch. 21 - In 1993, the U.S. government instituted a...Ch. 21 - In 1816, Robert Stirling, a Scottish clergyman,...Ch. 21 - Suppose an ideal (Carnot) heat pump could be...Ch. 21 - Review. This problem complements Problem 44 in...Ch. 21 - A firebox is at 750 K, and the ambient temperature...Ch. 21 - A 1.00-mol sample of an ideal monatomic gas is...Ch. 21 - A system consisting of n moles of an ideal gas...Ch. 21 - A heat engine operates between two reservoirs at...Ch. 21 - You are working as an assistant to a physics...Ch. 21 - Prob. 41APCh. 21 - You are working as an expert witness for an...Ch. 21 - An athlete whose mass is 70.0 kg drinks 16.0...Ch. 21 - Prob. 44APCh. 21 - Prob. 45APCh. 21 - A sample consisting of n moles of an ideal gas...Ch. 21 - The compression ratio of an Otto cycle as shown in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Show that the coefficients of performance of refrigerators and heat pumps are related by COPref=COPhp1. Start with the definitions of the COP s and the conservation of energy relationship between Qh, QC, and W.arrow_forward50 J of work are done on a refrigerator with a coefficient of performance of 4.0. How much heat is (a) extracted from the cold reservoir and (b) exhausted to the hot reservoir?arrow_forwardA Carnot air conditioner takes energy from the thermal energy of a room at 70 F and transfers it as heat to the outdoors, which is at 96 F.For each joule of electric energy required to operate the air conditioner, how many joules are removed from the room?arrow_forward
- A typical coal-fired power plant burns 340 metric tons of coal every hour to generate 2.5 × 106 MJ of energy. One metric ton has a mass of 1000 kg and a metric ton of coal has a volume of 1.5 m^3. The heat of combustion is 28 MJ/kg. What is the power plant’s efficiency?arrow_forwardAnswer b and carrow_forwardIceland has both high geothermal activity, with high temperatures near the surface, and abundant cold surface water. Iceland has many power plants that take advantage of the proximity of these natural hot and cold reservoirs. One plant uses an underground source at 122°C as the hot reservoir and a nearby lake at 5°C as the cold reservoir. The plant draws 16 MW from the hot reservoir to produce 1.8 MW of electricity. How does the actual efficiency of the plant compare to the theoretical maximum efficiency?arrow_forward
- The power output of a car engine running at 2300 rpmrpm is 300 kW . (a) How much work is done per cycle if the engine's thermal efficiency is 40.0 %?Give your answer in kJ. Win =7.83kJ (b)How much heat is exhausted per cycle if the engine's thermal efficiency is 40.0 %?Give your answer in kJ.arrow_forwardA heat engine does 9,200 J of work per cycle while absorbing 22.0 kcal of heat from a high-temperature reservoir. What is the efficiency of this engine? (1 kcal = 4186 J)arrow_forwardThe “Energy Guide” label on a washing machine indicates that the washer will use $85 worth of hot water per year if the water is heated by an electric water heater at an electricity rate of $0.113/kWh. If the water is heated from 12 to 55°C, determine how many liters of hot water an average family uses per week. Disregard the electricity consumed by the washer, and take the efficiency of the electric water heater to be 91 percent.arrow_forward
- A refrigerator does 26.0 k) of work while moving 107 kJ of thermal energy from inside the refrigerator. (a) Calculate the refrigerator's coefficient of performance. (b) Calculate the energy it transfers to its environment. kJarrow_forwardEnergy as heat is input into a steam turbine to convert 13.0 kg of liquid water at 25.0°C to water vapor at 100.0°C every hour. The efficiency of this heat engine is 21.8%. (A) What is the power output of the heat engine, in watts? (B) The temperature of the heat engine's boiler is 100.0°C, while the exhaust reservoir is maintained at 8.00°C. What is the difference between the theoretical maximum efficiency if the engine, and its actual efficiency? Please express your answer as a percentage.arrow_forwardIceland has both high geothermal activity, with high temperatures near the surface, and abundant cold surface water. Iceland has many power plants that take advantage of the proximity of these natural hot and cold reservoirs. One plant uses an underground source at 122°C as the hot reservoir and a nearby lake at 5°C as the cold reservoir. The plant draws 16 MW from the hot reservoir to produce 1.8 MW of electricity. How does the actual efficiency ofthe plant compare to the theoretical maximum efficiency?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY