You are working as an expert witness for an environmental agency. A utility in a neighboring town has proposed a new power plant that produces electrical power P from turbines. The utility claims that the plant will take in steam at temperature Th and reject water at temperature Tc into a flowing cold-water river. The flow rate of the river is Δm/Δt. The agency supervisor is concerned about the effect of dumping warm water on the fish in the river. (a) The utility claims that the power plant operates with Carnot efficiency. With that assumption, you need to determine for a trial presentation by how much the temperature of the water downstream from the power plant will rise due to the rejected energy from the power plant. (b) If you abandon the utility’s claim that the power plant operates at Carnot efficiency and assume a more realistic efficiency e, you need to determine the increase in water temperature in the stream. (c) Finally, you need to testify whether the increase in water temperature in part (b) will be higher or lower than that found in part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 21 Solutions
Physics for Scientists and Engineers
- Water at 15°C is to be pumped from a reservoir (zA = 2 m) to another reservoir at a higher elevation (zB = 9 m) through two 25-m-long plastic pipes connected in parallel. The diameters of the two pipes are 3 cm and 5 cm. Water is to be pumped by a 68 percent efficient motor–pump unit that draws 8 kW of electric power during operation. The minor losses and the head loss in the pipes that connect the parallel pipes to the two reservoirs are considered to be negligible. Determine the total flow rate between the reservoirs and the flow rates through each of the parallel pipes.arrow_forwardRefrigerant 134a enters a compressor with a mass flow rate of 5 kg/s and a negligible velocity. The refrigerant enters the compressor as a saturated vapor at 10°C and leaves the compressor at 1400 kPa with an enthalpy of 281.39 kJ/kg and a velocity of 50 m/s. The rate of work done on the refrigerant is measured to be 132.4 kW. If the elevation change between the compressor inlet and exit is negligible, determine the rate of heat transfer associated with this process, in kW.arrow_forwardIn a solar water heater, energy from the Sun is gathered by water that circulates through tubes in a rooftop collector.The solar radiation enters the collector through a transparent cover and warms the water in the tubes; this water is pumped into a holding tank. Assume that the efficiency of the overall system is 20% (that is, 80% of the incident solar energy is lost from the system). What collector area is necessary to raise the temperature of 200 L of water in the tank from 20C to 40°C in 1.0 h when the intensity of incident sunlight is 700 W/m2?arrow_forward
- I need help solving number 11. In question 1, they say U=(3/2)PV I found work on the gas as -3/2PV, so therefore Q should be 6/2PV but the answer key says 6PV.arrow_forwardIn an industrial process, a fuel-air mixture is fitted with a piston. When the mixture is ignited at a constant pressure of 700mm Hg, 2.0 kJ of energy is released and is found to occupy a final volume of 200L. What would be the initial volume occupied by the mixture if all energy released is converted as work done by the system to push the piston?arrow_forwardA 50 W electric heater (1 W = 1 J/s) operates for 10.0 minutes to heat a gas in a cylinder. At the same time, the gas expands from 6 to 12 L against to a constant pressure of 3.2 atm. Calculate for the amount of heat.arrow_forward
- A “solar cooker” consists of a curved reflecting mirror that focuses sunlight onto the object to be heated (Fig. P11.69). The solar power per unit area reaching the Earth at the location of a 0.50-m-diameter solar cooker is 600. W/m2. Assuming 50% of the incident energy is converted to thermal energy, how long would it take to boil away 1.0 L of water initially at 20.°C? (Neglect the specific heat of the container.)arrow_forwardAn inventor is claiming that she has developed a heat engine that can operate with a thermal efficiency of η = 37% while operating between high and low temperature thermal reservoirs at Th = 305 K and Tc = 260 K . Evaluate her claim. Is this claim possible? Yes or Noarrow_forwardConsider a water-to-water counter-flow heat exchanger with these specifications. Hot water enters at 95°C while cold water enters at 20°C. The exit temperature of hot water is 15°C greater than that of cold water, and the mass flow rate of hot water is 50 percent greater than that of cold water. The product of heat transfer surface area and the overall heat transfer coefficient is 1400 W/K. Taking the specific heat of both cold and hot water to be cp = 4180 J/kg·K, determine (a) the outlet temperature of the cold water, (b) the effectiveness of the heat exchanger, (c) the mass flow rate of the cold water, and (d) the heat transfer rate.arrow_forward
- In 1903, Aegidius Elling of Norway designed and built an 11-hp gas turbine that used steam injection between the combustion chamber and the turbine to cool the combustion gases to a safe temperature for the materials available at the time. Currently there are several gas-turbine power plants that use steam injection to augment power and improve thermal efficiency. For example, the thermal efficiency of the General Electric LM5000 gas turbine is reported to increase from 35.8 percent in simple-cycle operation to 43 percent when steam injection is used. Explain why steam injection increases the power output and the efficiency of gas turbines. Also, explain how you would obtain the steam.arrow_forwardA 100-W lightbulb is placed in a cylinder equipped with a moveable piston. The lightbulb is turned on for 0.015 hour, and the assembly expands from an initial volume of 0.85 L to a final volume of 5.88 L against an external pressure of 1.0 atm. Use the wattage of the lightbulb and the time it is on to calculate ΔE in joules (assume that the cylinder and lightbulb assembly is the system and assume two significant figures). Calculate w and q.arrow_forwardIf you had an uninsulated air compressor which required W(in)= 400 kW to take air from a state at 80 kPa and 20C and change it to a state at 800 kPa and 200C, what would the rate of Q be? Assume the air enters via a 10 cm diameter pipe at 20 m/s.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning