An electric generating station is designed to have an electric output power of 1.40 MW using a turbine with two-thirds the efficiency of a Carnot engine. The exhaust energy is transferred by heat into a cooling tower at 110°C. (a) Find the rate at which the station exhausts energy by heat as a function of the fuel combustion temperature Th. (b) If the firebox is modified to run hotter by using more advanced combustion technology, how does the amount of energy exhaust change? (c) Find the exhaust power for Th = 800°C. (d) Find the value of Th for which the exhaust power would be only half as large as in part (c). (e) Find the value of Th for which the exhaust power would be one-fourth as large as in part (c).
(a)
The rate at which the station exhaust energy by heat as a function of the fuel combustion temperature
Answer to Problem 15P
The rate at which the station exhaust energy by heat as a function of the fuel combustion temperature
Explanation of Solution
The rate of work output of the engine is
Write the formula to calculate the carnot efficiency of the engine.
Here,
The actual efficiency of the engine is equal to two-thirds of the efficiency of the carnot engine.
Here,
Substitute
Write the formula to calculate the rate of heat input to the engine.
Here,
Write the formula to calculate the rate at which the station exhaust energy by heat as a function of the fuel combustion temperature
Here,
Substitute
Substitute
Conclusion:
Substitute
Thus, the rate at which the station exhaust energy by heat as a function of the fuel combustion temperature
(b)
The effect on the amount of the energy if the firebox is modified to run hotter by using more advanced combustion technology.
Answer to Problem 15P
The amount of the energy exhaust decreases as the fire box temperature increases.
Explanation of Solution
If the firebox is modified to run hotter by using more advanced combustion technology, the exhaust power increases by a factor of
Conclusion:
The amount of the energy exhaust decreases as the fire box temperature increases.
(c)
The exhaust power for
Answer to Problem 15P
The exhaust power for
Explanation of Solution
The rate of work output of the engine is
From equation (IV), write the formula to calculate the exhaust power for
Conclusion:
Substitute
Thus, the exhaust power for
(d)
The value of
Answer to Problem 15P
The value of
Explanation of Solution
The rate of work output of the engine is
Write the expression for the exhaust power whuch would be only half as large as in part (c).
Here,
Substitute
Thus, the exhaust power whuch would be only half as large as in part (c) is
From equation (IV), Write the formula to calculate the value of
Conclusion:
Substitute
Thus, the value of
(e)
The value of
Answer to Problem 15P
No temperature value will provide an exhaust power of one-fourth of the value in part (c).
Explanation of Solution
The rate of work output of the engine is
Write the expression for the exhaust power whuch would be one-fourth as large as in part (c).
Here,
Substitute
Thus, the exhaust power whuch would be one-fourth as large as in part (c) is
Conclusion:
From equation (IV), Write the formula to calculate the value of
Thus, the given exhaust power is lesser than the minimum possible exhaust power
Want to see more full solutions like this?
Chapter 21 Solutions
Physics for Scientists and Engineers
- 220 V is supplied to 800 primary turns of an autotransformer. What will the outputvoltage be across 200 secondary turns? 2. A filament transformer has a turns ratio of 1:20. What current must be supplied to theprimary windings if 5 A is required by the filament? 3. The filament transformer in the previous question is supplied with 150 V to theprimary side. What is the secondary voltage? 4. 440 V is supplied to 1000 primary turns of an autotransformer. If the desired outputvoltage is 100 V how many secondary turns must be tapped?arrow_forward220 volts is supplied across 1200 winding of the primary coil of the autotransformer.If 1650 windings are tapped, what voltage will be supplied to the primary coil of thehigh-voltage transformer?2. A kVp meter reads 86 kVp and the turns ratio of the high-voltage step-up transformeris 1200. What is the true voltage across the meter?3. The supply voltage from the autotransformer to the filament transformer is 60 volts. If theturns ratio of the filament transformer is 1/12, what is the filament voltage?4. If the current in the primary side of the filament transformer in question 3 were 0.5 A,what would be the filament current?5. The supply to a high-voltage step-up transformer with a turns ratio of 550 is 190 volts.What is the voltage across the x-ray tube?arrow_forward220 V is supplied to 800 primary turns of an autotransformer. What will the outputvoltage be across 200 secondary turns? 2. A filament transformer has a turns ratio of 1:20. What current must be supplied to theprimary windings if 5 A is required by the filament? 3. The filament transformer in the previous question is supplied with 150 V to theprimary side. What is the secondary voltage? 4. 440 V is supplied to 1000 primary turns of an autotransformer. If the desired outputvoltage is 100 V how many secondary turns must be tapped?arrow_forward
- Assume ax(u) is constant, then show thatarrow_forwardOne strain of bacteria was found to have a membrane potential of -120 mVmV at a pHpH of 7.5. A bacterium can be modeled as a 1.5-μmμm-diameter sphere. How many positive ions are needed on the exterior surface to establish this membrane potential? (There are an equal number of negative ions on the interior surface.) Assume that the membrane properties are the same as those of mammalian cells.arrow_forwardQ: Draw the fabrication layers of a transistor with metal and semiconductor MS junction (Schottkyj unction).arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning