An electric generating station is designed to have an electric output power of 1.40 MW using a turbine with two-thirds the efficiency of a Carnot engine. The exhaust energy is transferred by heat into a cooling tower at 110°C. (a) Find the rate at which the station exhausts energy by heat as a function of the fuel combustion temperature Th. (b) If the firebox is modified to run hotter by using more advanced combustion technology, how does the amount of energy exhaust change? (c) Find the exhaust power for Th = 800°C. (d) Find the value of Th for which the exhaust power would be only half as large as in part (c). (e) Find the value of Th for which the exhaust power would be one-fourth as large as in part (c).
(a)
The rate at which the station exhaust energy by heat as a function of the fuel combustion temperature
Answer to Problem 15P
The rate at which the station exhaust energy by heat as a function of the fuel combustion temperature
Explanation of Solution
The rate of work output of the engine is
Write the formula to calculate the carnot efficiency of the engine.
Here,
The actual efficiency of the engine is equal to two-thirds of the efficiency of the carnot engine.
Here,
Substitute
Write the formula to calculate the rate of heat input to the engine.
Here,
Write the formula to calculate the rate at which the station exhaust energy by heat as a function of the fuel combustion temperature
Here,
Substitute
Substitute
Conclusion:
Substitute
Thus, the rate at which the station exhaust energy by heat as a function of the fuel combustion temperature
(b)
The effect on the amount of the energy if the firebox is modified to run hotter by using more advanced combustion technology.
Answer to Problem 15P
The amount of the energy exhaust decreases as the fire box temperature increases.
Explanation of Solution
If the firebox is modified to run hotter by using more advanced combustion technology, the exhaust power increases by a factor of
Conclusion:
The amount of the energy exhaust decreases as the fire box temperature increases.
(c)
The exhaust power for
Answer to Problem 15P
The exhaust power for
Explanation of Solution
The rate of work output of the engine is
From equation (IV), write the formula to calculate the exhaust power for
Conclusion:
Substitute
Thus, the exhaust power for
(d)
The value of
Answer to Problem 15P
The value of
Explanation of Solution
The rate of work output of the engine is
Write the expression for the exhaust power whuch would be only half as large as in part (c).
Here,
Substitute
Thus, the exhaust power whuch would be only half as large as in part (c) is
From equation (IV), Write the formula to calculate the value of
Conclusion:
Substitute
Thus, the value of
(e)
The value of
Answer to Problem 15P
No temperature value will provide an exhaust power of one-fourth of the value in part (c).
Explanation of Solution
The rate of work output of the engine is
Write the expression for the exhaust power whuch would be one-fourth as large as in part (c).
Here,
Substitute
Thus, the exhaust power whuch would be one-fourth as large as in part (c) is
Conclusion:
From equation (IV), Write the formula to calculate the value of
Thus, the given exhaust power is lesser than the minimum possible exhaust power
Want to see more full solutions like this?
Chapter 21 Solutions
Physics for Scientists and Engineers
- No chatgpt pls will upvote Iarrow_forwardHow would partial obstruction of an air intake port of an air-entrainment mask effect FiO2 and flow?arrow_forward14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.arrow_forward
- No chatgpt pls will upvotearrow_forwardsuggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forwardCheckpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forward
- What is integrated science. What is fractional distillation What is simple distillationarrow_forward19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning