
Chemistry & Chemical Reactivity, Hybrid Edition (with OWLv2 24-Months Printed Access Card)
9th Edition
ISBN: 9781285462530
Author: John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 21.11, Problem 2Q
Interpretation Introduction
Interpretation: the location of
Concept introduction:
In Arkel diagram,
- Down-left portion shows metallic compounds.
- Down-right portion shows covalent compounds.
- Down-mid (in between metallic and covalent) shows semiconducting compounds.
- Top shows ionic compounds.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Done
11:14
⚫ worksheets.beyondlabz.com
5 (a). Using the peak information you listed in the tables for
both structures, assign each peak to that portion of the
structure that produces the peak in the NMR spectrum. Draw
this diagram on your own sheet of paper and attach the sketch
of your drawing to this question.
Question 6
5 (b). Using the peak information you listed in the tables for
both structures, assign each peak to that portion of the
structure that produces the peak in the NMR spectrum. Draw
this diagram on your own sheet of paper and attach the sketch
of your drawing to this question.
Question 7
6. Are there any differences between the spectra you obtained
in Beyond Labz and the predicted spectra? If so, what were
the differences?
<
2. Predict the NMR spectra for each of these two
compounds by listing, in the NMR tables below, the
chemical shift, the splitting, and the number of
hydrogens associated with each predicted peak. Sort the
peaks from largest chemical shift to lowest.
**Not all slots must be filled**
Peak
Chemical Shift (d)
5.7
1
Multiplicity
multiplate
..........
5.04
double of doublet
2
4.98
double of doublet
3
4.05
doublet of quartet
4
5
LO
3.80
quartet
1.3
doublet
6
Peak
Chemical Shift (d)
Multiplicity
Interpreting NMR spectra is a skill that often requires some
amount of practice, which, in turn, necessitates access to a
collection of NMR spectra. Beyond Labz Organic Synthesis and
Organic Qualitative Analysis have spectral libraries containing
over 700 1H NMR spectra. In this assignment, you will take
advantage of this by first predicting the NMR spectra for two
closely related compounds and then checking your predictions
by looking up the actual spectra in the spectra library. After
completing this assignment, you may wish to select other
compounds for additional practice.
1. Write the IUPAC names for the following two structures:
Question 2
Question 3
2. Predict the NMR spectra for each of these two
compounds by listing, in the NMR tables below, the
chemical shift, the splitting, and the number of
hydrogens associated with each predicted peak. Sort the
peaks from largest chemical shift to lowest.
**Not all slots must be filled**
Chapter 21 Solutions
Chemistry & Chemical Reactivity, Hybrid Edition (with OWLv2 24-Months Printed Access Card)
Ch. 21.2 - Prob. 1CYUCh. 21.2 - Write the formula for each of the following (a)...Ch. 21.2 - Prob. 3CYUCh. 21.2 - Prob. 4CYUCh. 21.4 - Prob. 3RCCh. 21.5 - Prob. 1QCh. 21.5 - Prob. 2QCh. 21.8 - Prob. 1QCh. 21.8 - Prob. 2QCh. 21.8 - Prob. 3Q
Ch. 21.8 - Prob. 4QCh. 21.8 - Prob. 3RCCh. 21.11 - Prob. 1QCh. 21.11 - Prob. 2QCh. 21 - Give examples of two basic oxides. Write equations...Ch. 21 - Prob. 2PSCh. 21 - Prob. 3PSCh. 21 - Prob. 4PSCh. 21 - Prob. 5PSCh. 21 - Prob. 6PSCh. 21 - For the product of the reaction you selected in...Ch. 21 - For the product of the reaction you selected in...Ch. 21 - Prob. 9PSCh. 21 - Prob. 10PSCh. 21 - Place the following oxides in order of increasing...Ch. 21 - Place the following oxides in order of increasing...Ch. 21 - Prob. 13PSCh. 21 - Prob. 14PSCh. 21 - Prob. 15PSCh. 21 - Prob. 16PSCh. 21 - Prob. 17PSCh. 21 - Prob. 18PSCh. 21 - Prob. 19PSCh. 21 - Prob. 20PSCh. 21 - Prob. 21PSCh. 21 - Write balanced equations for the reaction of...Ch. 21 - Prob. 23PSCh. 21 - (a) Write equations for the half-reactions that...Ch. 21 - When magnesium bums in air, it forms both an oxide...Ch. 21 - Prob. 26PSCh. 21 - Prob. 27PSCh. 21 - Prob. 28PSCh. 21 - Calcium oxide, CaO, is used to remove SO2 from...Ch. 21 - Prob. 30PSCh. 21 - Prob. 31PSCh. 21 - The boron trihalides (except BF3) hydrolyze...Ch. 21 - When boron hydrides burn in air, the reactions are...Ch. 21 - Prob. 34PSCh. 21 - Write balanced equations for the reactions of...Ch. 21 - Prob. 36PSCh. 21 - Prob. 37PSCh. 21 - Alumina, Al2O3, is amphoteric. Among examples of...Ch. 21 - Prob. 39PSCh. 21 - Prob. 40PSCh. 21 - Describe the structure of pyroxenes (see page...Ch. 21 - Describe how ultrapure silicon can be produced...Ch. 21 - Prob. 43PSCh. 21 - Prob. 44PSCh. 21 - Prob. 45PSCh. 21 - Prob. 46PSCh. 21 - Prob. 47PSCh. 21 - The overall reaction involved in the industrial...Ch. 21 - Prob. 49PSCh. 21 - Prob. 50PSCh. 21 - Prob. 51PSCh. 21 - Prob. 52PSCh. 21 - Prob. 53PSCh. 21 - Prob. 54PSCh. 21 - Prob. 55PSCh. 21 - Sulfur forms a range of compounds with fluorine....Ch. 21 - The halogen oxides and oxoanions are good...Ch. 21 - Prob. 58PSCh. 21 - Bromine is obtained from brine wells. The process...Ch. 21 - Prob. 60PSCh. 21 - Prob. 61PSCh. 21 - Halogens combine with one another to produce...Ch. 21 - The standard enthalpy of formation of XeF4 is 218...Ch. 21 - Draw the Lewis electron dot structure for XeO3F2....Ch. 21 - Prob. 65PSCh. 21 - Prob. 66PSCh. 21 - Prob. 67GQCh. 21 - Prob. 68GQCh. 21 - Consider the chemistries of the elements...Ch. 21 - When BCl3 gas is passed through an electric...Ch. 21 - Prob. 71GQCh. 21 - Prob. 72GQCh. 21 - Prob. 73GQCh. 21 - Prob. 74GQCh. 21 - Prob. 75GQCh. 21 - Prob. 76GQCh. 21 - Prob. 77GQCh. 21 - Prob. 78GQCh. 21 - Prob. 79GQCh. 21 - Prob. 80GQCh. 21 - Prob. 81GQCh. 21 - Prob. 83GQCh. 21 - Prob. 84GQCh. 21 - A Boron and hydrogen form an extensive family of...Ch. 21 - In 1774, C. Scheele obtained a gas by reacting...Ch. 21 - What current must be used in a Downs cell...Ch. 21 - The chemistry of gallium: (a) Gallium hydroxide,...Ch. 21 - Prob. 89GQCh. 21 - Prob. 90GQCh. 21 - Prob. 91GQCh. 21 - Prob. 92GQCh. 21 - Prob. 93ILCh. 21 - Prob. 94ILCh. 21 - Prob. 95ILCh. 21 - Prob. 96ILCh. 21 - Prob. 97ILCh. 21 - Prob. 98ILCh. 21 - Prob. 99SCQCh. 21 - Prob. 100SCQCh. 21 - Prob. 101SCQCh. 21 - Prob. 102SCQCh. 21 - Prob. 103SCQCh. 21 - Prob. 104SCQCh. 21 - Prob. 105SCQCh. 21 - Prob. 106SCQCh. 21 - Prob. 107SCQCh. 21 - Prob. 108SCQCh. 21 - Prob. 109SCQCh. 21 - Prob. 110SCQCh. 21 - Comparing the chemistry of carbon and silicon. (a)...Ch. 21 - Prob. 112SCQCh. 21 - Xenon trioxide, XeO3, reacts with aqueous base to...
Knowledge Booster
Similar questions
- 11:14 ... worksheets.beyondlabz.com 3. To check your predictions, click this link for Interpreting NMR Spectra 1. You will see a list of all the - compounds in the spectra library in alphabetical order by IUPAC name. Hovering over a name in the list will show the structure on the chalkboard. The four buttons on the top of the Spectra tab in the tray are used to select the different spectroscopic techniques for the selected compound. Make sure the NMR button has been selected. 4. Scroll through the list of names to find the names for the two compounds you have been given and click on the name to display the NMR spectrum for each. In the NMR tables below, list the chemical shift, the splitting, and the number of hydrogens associated with each peak for each compound. Compare your answers to your predictions. **Not all slots must be filled** Peak Chemical Shift (d) Multiplicity 1 2 3 4 5arrow_forwardО δα HO- H -Br δα HO-- + + -Br [B] 8+ HO- -Br δα नarrow_forward1/2 - 51% + » GAY Organic Reactions Assignment /26 Write the type of reaction that is occurring on the line provided then complete the reaction. Only include the major products and any byproducts (e.g. H₂O) but no minor products. Please use either full structural diagrams or the combination method shown in the lesson. Skeletal/line diagrams will not be accepted. H3C 1. 2. CH3 A Acid OH Type of Reaction: NH Type of Reaction: + H₂O Catalyst + HBr 3. Type of Reaction: H3C 4. Type Reaction: 5. H3C CH2 + H2O OH + [0] CH3 Type of Reaction: 6. OH CH3 HO CH3 + Type of Reaction: 7. Type of Reaction: + [H]arrow_forward
- humbnai Concentration Terms[1].pdf ox + New Home Edit Sign in Comment Convert Page Fill & Sign Protect Tools Batch +WPS A Free Trial Share Inter Concreting Concentration forms. Hydrogen peroxide is a powerful oxidizing agent wed in concentrated solution in rocket fuels and in dilute solution as a hair bleach. An aqueous sulation of H2O2 is 30% by mass and has density of #liligime calculat the Ⓒmolality ⑥mole fraction of molarity. 20 9. B. A sample of Commercial Concentrated hydrochloric ETarrow_forwardIf a reaction occurs, what would be the major products? Please include a detailed explanation as well as a drawing showing how the reaction occurs and what the final product is.arrow_forwardWould the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forward
- (a) Sketch the 'H NMR of the following chemical including the approximate chemical shifts, the multiplicity (splitting) of all signals and the integration (b) How many signals would you expect in the 13C NMR? CH3arrow_forwardDraw the Show the major and minor product(s) for the following reaction mechanisms for both reactions and show all resonance structures for any Explain why the major product is favoured? intermediates H-Brarrow_forwardChoose the right answerarrow_forward
- 8. What is the major product of the following reaction? KMnO4 b a TOH OH OH C d OH "OH HO OH OHarrow_forwardChoose the right answerarrow_forward3. Draw ALL THE POSSBILE PRODUCTS AND THE MECHANISMS WITH ALL RESONANCE STRUCTURES. Explain using the resonance structures why the major product(s) are formed over the minor product(s). H₂SO4, HONO CHarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning

General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning

General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning

Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax


Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning