
(a)
Interpretation: The complete balanced equation should be written for the given reaction.
Concept introduction: Main group elements are categorized as s-block and p-block elements. The s-block elements include metals belonging to group
Ionic compounds are formed by the loss of electrons from the metal which is gained by the nonmetals. The metal gets positively charge and the non-metal attains a negative charge thus forming cations and anions respectively. They do so to attain a noble gas configuration or to attain stability.
Here, by losing electrons metal M achieve the noble gas configuration. These electrons are gained by the non-metals X as shown below.
The metals of group
The compounds of non-metals with oxides and hydrides are covalent compounds. This is because non-metals are less electropositive and the difference in electronegativity between two elements is less than
(b)
Interpretation: The complete balanced equation should be written for the given reaction.
Concept introduction: Main group elements are categorized as s-block and p-block elements. The s-block elements include metals belonging to group
Ionic compounds are formed by the loss of electrons from the metal which is gained by the nonmetals. The metal gets positively charge and the non-metal attains a negative charge thus forming cations and anions respectively. They do so to attain a noble gas configuration or to attain stability.
Here, by losing electrons metal M achieve the noble gas configuration. These electrons are gained by the non-metals X as shown below.
The metals of group
The compounds of non-metals with oxides and hydrides are covalent compounds. This is because non-metals are less electropositive and the difference in electronegativity between two elements is less than
(c)
Interpretation: The complete balanced equation should be written for the given reaction.
Concept introduction: Main group elements are categorized as s-block and p-block elements. The s-block elements include metals belonging to group
Ionic compounds are formed by the loss of electrons from the metal which is gained by the nonmetals. The metal gets positively charge and the non-metal attains a negative charge thus forming cations and anions respectively. They do so to attain a noble gas configuration or to attain stability.
Here, by losing electrons metal M achieve the noble gas configuration. These electrons are gained by the non-metals X as shown below.
The metals of group
The compounds of non-metals with oxides and hydrides are covalent compounds. This is because non-metals are less electropositive and the difference in electronegativity between two elements is less than
(d)
Interpretation: The complete balanced equation should be written for the given reaction.
Concept introduction: Main group elements are categorized as s-block and p-block elements. The s-block elements include metals belonging to group
Ionic compounds are formed by the loss of electrons from the metal which is gained by the nonmetals. The metal gets positively charge and the non-metal attains a negative charge thus forming cations and anions respectively. They do so to attain a noble gas configuration or to attain stability.
Here, by losing electrons metal M achieve the noble gas configuration. These electrons are gained by the non-metals X as shown below.
The metals of group
The compounds of non-metals with oxides and hydrides are covalent compounds. This is because non-metals are less electropositive and the difference in electronegativity between two elements is less than

Want to see the full answer?
Check out a sample textbook solution
Chapter 21 Solutions
Chemistry & Chemical Reactivity, Hybrid Edition (with OWLv2 24-Months Printed Access Card)
- Steps and explanations pleasearrow_forwardUse diagram to answer the following: 1.Is the overall rxn endo- or exothermic. Explain briefly your answer____________________2. How many steps in this mechanism?_____________3. Which is the rate determining step? Explain briefly your answer____________________4. Identify (circle and label) the reactants,the products and intermediate (Is a Cation, Anion, or a Radical?) Please explain and provide full understanding.arrow_forwardDraw the entire mechanism and add Curved Arrows to show clearly how electrons areredistributed in the process. Please explain and provide steps clearly.arrow_forward
- Match the denticity to the ligand. Water monodentate ✓ C₂O2 bidentate H₂NCH₂NHCH2NH2 bidentate x EDTA hexadentate Question 12 Partially correct Mark 2 out of 2 Flag question Provide the required information for the coordination compound shown below: Na NC-Ag-CN] Number of ligands: 20 Coordination number: 2✔ Geometry: linear Oxidation state of transition metal ion: +3 x in 12 correct out of 2 question Provide the required information for the coordination compound shown below. Na NC-Ag-CN] Number of ligands: 20 Coordination number: 2 Geometry: linear 0 Oxidation state of transition metal ion: +3Xarrow_forwardCan you explain step by step behind what the synthetic strategy would be?arrow_forwardPlease explain step by step in detail the reasoning behind this problem/approach/and answer. thank you!arrow_forward
- 2. Predict the product(s) that forms and explain why it forms. Assume that any necessary catalytic acid is present. .OH HO H₂N OHarrow_forwardconsider the rate of the reaction below to be r. Whats the rate after each reaction? Br + NaCN CN + NaBr a. Double the concentration of alkyl bromide b. Halve the concentration of the electrophile & triple concentration of cyanide c. Halve the concentration of alkyl chloridearrow_forwardPredict the organic reactant that is involved in the reaction below, and draw the skeletal ("line") structures of the missing organic reactant. Please include all steps & drawings & explanations.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning

